京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代:媒体新任务和媒体人的新角色
提要:《大数据时代: 生活、工作与思维的大变革》一书最具洞见和最富争议的观点是:大数据时代最大的转变就是,放弃对因果关系的渴求,而取而代之关注相关关系。也就是说只要知 道是什么,而不需要知道为什么。本文认为,理解大数据时代的相关性思维方式,以及其它本质要素,进而理解大数据环境下受众对高品质、确定性信息的 需求,有助于传统媒体开阔眼界,找到寻求战略突围的方法。
关键词:大数据时代 传统媒体 媒体人 角色
文/张坤阳 徐铁英
在大数据时代,必须承认,追求因果性的传统媒体谈稿会等形式已经落伍。无论多么优秀的记者,他们对于事物的观察都受制于个人视野与立场,即 使是相对深入的,也未必全面、充分。而与记者在某一个视野有限的观察点上对事物进行的观察与分析不同的是,有效加工的大规模数据可以揭示更大范围内的或更 接近事实的情状,从而也为报道的深入提供了基础,从而彻底改变媒体生态。
媒体人角色的新转变
维克托舍恩伯格所理解的大数据思维,即不再热衷于寻找因果关系,而寻找事物之间的相关关系。这种观点,意在颠覆此前有限数据时代的信 息思维理念。传统媒体在信息思维上的不足恰恰在于:只见树木,不见森林。追求微观精确,忽视宏观把握。传统媒体应该有大数据视野。有了这种视野,即便关注 的是点上的微观问题,看到的风景也会不同,不是孤零零的点的意义,而是具有面上价值的节点。
以世界首届数据新闻奖的一个入围作品为例,这是由英国广播公司(BBC)和毕马威会计师事务所联合制作的《预算计算器:2012年财政预算 将如何影响你?》。政府财政预算向来是一项专业和繁复的公共政策事件,媒体要解决的问题是如何有效解读它对普通居民的生活影响。BBC的计算器简便实 用,用户只需在界面上输入一些日常个人信息,就能自动算出新预算会让自己多付多少税、明年的生活会比今年变得更好还是更差,等等。
在国内也有这方面的尝试,去年国庆节,游客在天安门广场留下大量垃圾,引发国人素质的大讨论。从大数据分析的角度来看,把历年来所有关于天 安门广场上垃圾的报道梳理出来。这样把所有数据全部整合出来,就能发现垃圾数量和游客数字之间,其实不存在关联性(事实上,天安门广场出于安全需要,不设 垃圾箱),人文素质也就无从谈起。通过开掘数据,记者的工作建立在扎实证据基础上,为读者提供经过科学分析的洞见,把抽象的、宏观的社会问题转化为跟普通 人相关、普通人容易理解的内容,还可分析复杂形势中事物发展的规律和趋势,给人们决策提供预见性内容。
在大数据时代,媒体人角色,就应该是意义生成者,主要工作内容是阐释事件的影响。建立在大数据技术之上的事件分析和意义解读,要比采访专家和凭记者个人判断更有可靠性。
战略突围要提前布局
为什么走在大数据前沿的都是一些互联网公司,而不是传统媒体或者出版机构?就在于技术原因起决定性因素,技术汇聚数据,数据的意义自现,才 会有相关性一说,才会忽视因果联系。这方面,传统媒体业存在先天劣势,不仅掌握的数据资源有限,掌握的人才和管理也基本为零。可以说,绝大多数媒体机 构连传统的流程、工具和方法都没有掌握。
一个简单的例子:中国最大的电视台中央电视台据称拥有近40万小时的节目资源,年播出总量为23.0248万小时;而YouTube每分钟 就有72小时的视频被上传,更不用提每月10亿独立用户的行为数据。数据量级相差悬殊。所以,传统媒体深受大数据冲击和影响,但又缺乏根基,难以出现颠覆 性的创新,无法孵化出新的业务形态。
传统媒体在大数据时代生存下去,除要对新闻业务本身进行变革之外,还要提前布局,积累数据资产,打牢根基。如浙江日报报业集团收购边锋浩 方。边锋浩方拥有五六百款游戏,活跃用户达2000多万,最高在线人数150万。围绕这个平台,浙报集团就可以建设数据分析系统为支撑,深入筛选捕捉用户 行为、习惯、偏好和需求,挖掘和积累可贵的数据资源。从其自身成长性和增值可行性来看,这个平台对传统媒体价值巨大。
另一方面,要加强数据能力的获取。媒体应通过合作、购买、外包、孵化等方式,首先掌握传统的数据处理能力,进而具备大数据应用的能力;引进 和培养数据人才,包括拥有统计学、商业智能、机器学习、自然语言处理等多方面技能的数据科学家,也要有知晓如何通过运用大数据来设计产品和运营企业的 分析师和管理者。浙报集团旗下传媒梦工场就投资了知微、优微等项目,主要专注社交网络的数据深度挖掘。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27