京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据挖掘如何让统计教学妙趣横生_数据分析师
数据挖掘""""="" width="" ""619""""="" height="" ""442""""="">
北京被业界尊称为asp.net之父的微软公司云计算与企业级产品工程部执行副总裁scottguthrie先生来华传道、解惑,对当前技术趋势进行了独到解析,并与中国的开发人员分享了微软的云战略和他从程序员一路走来的成长历程。scott的到来吸引了众多中国开发者的关注,并分别在现场和通过在线直播与scott进行了面对面。
scottguthrie在1997年从杜克大学的计算机科学专业毕业后,即加入了微软公司。1998年,他与markanders一起创造了众所皆知的 asp.net,带来了全面利用计算与通信技术平台的一场革命,对全球it界产生了重大意义。目前,scottguthrie主要负责微软云计算基础架构、服务器解决方案、数据库、管理和开发工具等业务。他的工程团队致力于开发包括microsoftazure、windowsserver、 sqlserver、activedirectory、systemcenter、visualstudio和.net等产能品。
当我们进入到移动为先、云为先时代,丰富多样的设备与云服务共同创造了生产与消费数据的新高潮,赋予全球每个人、每个企业更强的创新动力。技术的开发也围绕着云展开。scottguthrie认为,开发能力是云计算的核心要素。他希望通过云计算的普及,将跨平台技术、服务和工具整合在一起,提供全面整合的计算体验,让开发者能以企业级规模实现快速创新,实现让计算简单易用的目标。
微软的核心价值是为移动为先,云为先的世界创造生产力和平台,并由此架构更广泛的生态系统,与合作伙伴和开源社区相关的跨平台工具、技术与服务进行整合,最大化微软技术的价值。scottguthrie详细介绍了azure的运行特性、所支持的丰富功能及服务。他表示,针对各种开源的框架,azure 不仅可以创建复杂的应用,而且可以自我配置,使其构建过程变得更加容易。此外,scottguthrie还现场亲自编写代码演示如何运用 microsoftazure进行web开发服务。这不仅展现出scott个人的技术实力,同时也代表着微软在云计算领域快步向前满怀信心。
微软不断加大在中国的研发投入以及技术分享与创新合作的力度,包括在华建立云计算创新中心、微软企业级云平台office365和 windowsazure落地中国、微软sqlserver2014数据平台投入商用、实施citynext计划以及启动创投加速器项目、成立微软亚太科技有限公司,夯实在华云战略布局助力云创新等等一系列努力,充分证明微软与产业合作伙伴、政府、学术机构和高校以及各行业通力合作,共同构建适合中国国情的本地化云计算生态系统的努力,以及进一步融入中国经济发展的决心和承诺。
随着大数据时代的到来,无论是在偏重理论的数学、统计学院,还是在关注应用的经济管理、mba/emba、工业工程、公共卫生、临床医学、作物栽培,甚至是在历史、艺术、体育等专业中,统计学都已成为一个热门的学科。因此,本文将以统计教学为例,结合笔者近几年来与国内外高校老师和学生的工作交流经验,谈一谈高校教学改革的体会。
其实,近几年来关于高校课堂教学改革的讨论也很多,有的说要增大学生参与课堂的力度,有的说拓展课堂教学的宽度,还有的说要加快教学手段的现代化程度,等等。这些都有道理,然而,从另一个角度而看,还有一件事必不可少,那就是需要调整课堂教学的顺序。用一句经典的语句来概括,叫做 dothelastthingfirst(即:最后的事情最先做)。
说到调整课堂教学的顺序,那就要先来谈一谈传统的统计教学顺序通常是怎么样的:首先说明这节课是来学某某定理(或理论)的,其次讲一讲这个定理成立的假设条件是什么,然后在现场推导在假设条件成立的情况下,如何一步步得到这个最终定理的(这部分往往会成为课堂的重点),再讲讲这个定理有什么特点(有时候还需要证明一下这些特点),最后才介绍这个定理的应用价值。时间宽裕的话会拿一些简单的数据跑一跑现成的程序,时间不够的话就让学生回家做习题了。
这样的教学过程固然有其可取之处,但也有一个先天性的缺陷:很多数理基础不够扎实的学生很可能在还没有感受到统计学魅力的情况下,就已经迷失在一大堆复杂的公式和数字之中,对统计学产生了厌倦乃至恐惧的情绪,更谈不上激发他们的学习兴趣了。
破解这个难题的方法其实也很简单原先的教学内容一个都不能少,但需要改变教学顺序,并且适当地增加一些新鲜元素。例如:先通过一两个贴近生活或热点新闻的案例(这往往需要教师结合实际情况不断开发更新)来讲述某某定理的应用价值,再结合现代化的教学手段与工具简明扼要地突出该定理的特点,在此基础上再详细说明推理过程。如果时间不够的话,推理过程可以让学生课后阅读。
这样一来,教学效果就会得到明显的改善。因为学生们在活生生地看到掌握该理论知识的美好前景之后,学习热情容易被最大限度地激发出来,再大的苦也愿意吃,再多的课外学习任务也愿意完成,其余的所有问题也就不是什么问题了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23