京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在中国,大数据的有效商业模式在哪里
大数据,概念诞生已久,而时下大热,似有颠覆现有世界之势。随着现实世界逐步被数字化,辅以层出不穷的新的技术手段和应用,大数据在悄无声息的源源不断的产生,积累,关联,发酵,于是乎,一个崭新的时代蕴育而出。
有人的地方就是江湖,而在数字时代,大数据也是一个大江湖!
好项目晚宴此次选择大数据为主题也是期望在各位到场大拿的探讨中能一窥这个大大江湖的些许真容。
在企业的日常运营中,通过大数据的帮助可改变公司的决策机制和流程。通常情况下公司的决策都会由领导层面少数人掌握,主要靠的是过往经验和判断,而有了大数据支持,只要懂得解读数据的含义,任何执行层面的员工就可以根据数据和程序作出必要的决策,从而提高了决策效率。
另一方面,通过大数据的帮助可做出更加客观和有依据的预测决断。人的经验是对过去的总结和提炼,由于每个人个体的区别和局限性,依赖经验对未来做预判就有很大局限性,而大数据通过对过往全量数据的分析和挖掘,趋势的总结和归纳,以及每时每刻都在产生的实时数据的验证和修正,就可得出更加客观和接近准确的预判结果。
这些都可帮助企业在竞争中获得先机,形成优势,甚至取得竞争的胜利。
通常认为大数据首先影响到的行业会是电信,金融,网络,政府等行业和领域,这些领域的确是已有大量的数据资源,但如何利用好这些数据资源,对于这些领域的企业却是个棘手的问题,大数据思维欠缺,数据技术人员储备不够,又做不到开放数据给第三方,于是导致了这些领域反而对大数据的利用度不够,坐拥金矿却无法有效开采,从而也无法享受到大数据所带来的好处。反而是一些相对传统的领域和市场化程度更高,用户人群特性更集中和明显的领域更容易接受大数据的变革。
以下是几个特定领域的大数据应用观点:
1、线下商业用户的大数据战略,采集用户属性信息,记录用户行为轨迹,比照网络行为数据,绘制客户需要的用户属性图谱,以帮助完善线下商业的布局和各种经营。
2、电商行业的大数据为电商企业直接带来订单转化,提高在线服务质量,为交易双方带来双赢的结果。记录商户和用户的网络交易情况,结合人口属性分析,可为每个商户和网购个人生成诚信标签,结合金融和授信,可衍生出创新金融产品,这些的持续经营都需要有持续的大数据作为依据支撑。
3、娱乐产业的粉丝经济随着大数据手段的引入,能更加准确的拿捏住这个领域的关键点,从商业角度来看,粉丝没有价值,脑残粉才有价值。粉丝只是意味着明星号召力的存在,而脑残粉就意味着明星价值变现的可能性。
从大数据角度来看,集体用户的行为规律很重要,但搞清楚用户是谁更重要。用户的行为规律可以作为改善老产品生产新产品的有力依据,而知道用户是谁、在哪,并能随时随刻的找到他们触及到他们才是完成商业转化的关键。
当下很多做明星APP的项目,大部分都没找准定位,明星APP的目的不是为了多圈用户能多卖广告,更核心的目的是通过APP这种相对高门槛的产品来筛选出粉丝群体中的脑残粉,并真正获知他们获取他们,然后再完成商业变现。
1、技术驱动产品的完善;
大数据毕竟是个技术活,技术型人才是这个领域最核心的基础资源,基础应用形成产品还有很多空间。
2、产品和商业模式驱动市场竞争格局的改变;
产品与需求匹配,形成可靠的商业模式,善于利用大数据的企业将在竞争中获胜,从而改变市场的竞争格局,带动全行业关注和引入大数据。
3、市场格局的重构将给予大数据应有的空间,形成产业生态;
大数据从工具变为竞争和发展的必备武器,作为企业的核心资源,与产业相容,形成生态,形成专业分工,跟行业一起协同发展。
大数据不能大而无用,对应到特定企业,特定人群,特定需求上,大数据才能发挥独有的特定作用,产生价值。针对企业特定需求的数据支撑服务,针对特定人群的特定需求的数据支撑服务,就是大数据的小而美战略,也是当下国内大数据创业的主要方向。
虽然一直看好大数据未来的潜力和前景,但就行业发展阶段来讲,目前这个行业也面临几个无解的困扰:
1、在中国,大数据的有效商业模式在哪里?
2B的服务不论做到多完美,总是能被客户挑剔和质疑,更难的是无法收上费。
在美国,商业环境很成熟,产业链分工很细致和专业,抓住用户的一个痛点需求做出好产品来就能获得市场和资本的认可,在国内没有这样的环境,同业竞争的无序,企业客户没有付费习惯,不认可数据服务的价值,用户需求的不明确和多变,等等都是导致在国内做大数据创业这条路的无比艰辛。
2、大数据创业如何专注?
挖掘用户需求,解决用户痛点,永远都是商业社会生存法则里非常重要的两点,但在国内要想做到这两点很难。
客户需求不明确,痛点不直接,数据人才缺乏,产品能力无法满足客户需求,基础数据不完善,商业诚信缺失等,都是无法在短期内能迅速解决的难点。
3、投资者的角度,下一个优秀的大数据创业项目会在哪里产生?
对于投资人来说,大数据的对任何行业的渗透特性,从业人员对大数据的理解能力,产品实现的难易程度,大数据对现有模式的影响和颠覆程度,商业模式形成的难易程度,行业小气候等等,都是投资大数据领域所要考察的关键因素。
所以虽然目前国内的大数据创业仍然面临诸多难解的困扰,但现在能提前切入这个领域,对市场的理解和培养,积累的数据、客户、团队和技术等多方面的资源,未来将是企业制胜的法宝。
正品天地一聚,江湖上从此多了一些传言:
海外派:市场成熟的美国市场,提供大数据产品服务的公司在应用层面全面开花,趋势由之前的面向有限的大中型企业客户提供高定价的数据产品和服务转而向数量基数更大的小微企业提供聚焦需求和痛点功能的产品和服务,每个客户付费单价不高,但数量足够大,整体市场空间更可观。
电商派:电商领域的大数据服务,客户不会在乎你的技术是不是最先进和尖端,你的算法有多高深和智能,你宣称掌握的数据资源到底有多大,客户只关心你的产品和服务能给他们带来多少订单增量,多少订单转化,多少运营成本的节省。技术自身的神话让它们躲到服务器端自己偷着美吧。
娱乐派:娱乐产业将是被大数据渗透和影响的下一个巨大的市场,不远的未来定能产生极具颠覆性和爆发性的创新型企业。粉丝经济的核心是粉丝不重要,脑残粉才重要。用户的集体行为数据有价值,但知道每个用户是谁更有商业价值。
线下派:大数据不邪乎,也不神秘,不是飘在空中云里雾里的不知怎么就能颠覆世界的玩意儿,大数据是要捋起袖子和裤腿辛辛苦苦一点一点干出来的,将现实世界的人与数字化的数据符号通过技术手段一一对应积累,再与客户需求做匹配,才能真正把数据变钱,才能玩通商业模式。大数据不能来虚的,一开始就要跟商业绑定,一上来就要能赚钱才是小公司大数据创业的王道。
投资人派:投资机构是不是将大数据作为单独领域来部署专门的兵力不重要,重要的是专注任何领域都需要具备大数据思维,不然错过的不仅仅是几个投资机会,而将是一整个时代。
正所谓:
大数据,你见与不见,它就在那里,自然高速增长。
大数据,你懂与不懂,它都不在乎,渐渐的影响你的决策。
大数据,你投与不投,它不卑不亢,默默酝酿爆发。
大数据,你信与不信,它都来了,代表一个新的时代!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24