
不仅要清楚如何收集数据,还要清楚如何创造数据
导读:企业每天都受到大量信息的冲击。这些信息由邮件、社交媒体、网站和移动应用等等生成,来自于它们业务的各个方面。
业界估计数据每年的增长率在30%到50%之间,对于许多企业来说,每年将增长上PB的数据量。问题显然不是缺少数据,而是缺少“正确”的数据。
根据埃森哲近期的调查显示,仅40%的管理者认为他们现有的分析应用能够识别有效数据,只有20%对现存分析应用支持的业务成果表示“非常满意”。毫不夸张的说,这样的结果是很不令人满意的。
拥有正确的数据能够帮助企业制定决策。然而,获取正确的数据却要求能够搭建、配置、装备和升级应用的基础设施。应用程序在必须满足功能需要的同时,还需要提供能够解决企业关键问题的数据。
《埃森哲技术视野2013》是一份关注企业IT未来的报告,该报告认为企业满足自己对于“数据分析设计”的需要是公司能够利用技术和软件提高竞争力、协作能力和业务成果的主要方式之一。
很过公司头脑中还没有具体的问题就去捕捉数据。所以当把数据作为战略性业务决策的投入来分析时,比如进入一个新的市场或为新产品估价,信息中断的问题就会显现出来,导致错失良机。
企业面临的已经不再是技术障碍,而是如何富有战略前瞻性地组织正确的问题。该结果就是数据供应链的第一步,应用程序服务的不仅是用户,还有业务。
要想把应用设计的焦点从功能为主转变到分析为主,CIO可以采取如下措施。
很多软件供应商正在准备通过应用编程接口(API),允许用户更容易地从软件产品,包括软件应用中提取数据。公司因此理所当然地要考虑它们应该从系统中收集哪些数据,才能解决公司面临的最重要的问题。
一些公司也在为它们的定制应用增加设备,设计团队收集交易、活动或日志等信息并将其制成报表,使用传感器技术填补出现的数据间断。
例如,UPS开发了一种应用于车内传感器和手持电脑的系统,追踪船只信息和车辆行驶情况。UPS发现,左转弯(在美国)会延缓送货、增加燃油成本。这一信息的发现为UPS每年节省了九百万加仑的燃料。
培育和收集服务于销售和市场的信息能力代表着公司抓取数据的机会。这些数据能够解决很多关于消费者的长时间没有解决的问题。
2020年产业评估预计关联设备将会达到300亿到500亿,那时一定会产生大量的来自于社交媒体、移动应用和传感器技术的数据以及非结构化数据。但是公司需要从数据中选取正确的数据,之后启动获取数据的程序。
一旦发现正确的数据,就应该像在一条流水线上处理来自多个供应商的汽车零件一样处理它们。
数据被过滤到供应链之后,应用程序就可以对它进行操作,增加其他数据、用更新的数据将其升级、将其转变成新的产品。
通过目的明确地收集数据,公司能够获得更好的数据和更深刻的洞察力。之后可以周期性地回顾公司面临的问题,并随着业务情况和战略命令的变化提取新的数据。
这意味着将企业文化向以洞察力为驱动的方向转变。这需要将业务功能和IT结合,并鼓励收集更好更即时的数据。
通过部署这些功能,业务将逐渐变为完全以洞察力为驱动。这意味着发展超越用户功能的应用和产品,让它们积极地满足数据分析的需要,以便于不仅能够生产更多的数据,还能生产能够解决主要业务问题的数据。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19