
不仅要清楚如何收集数据,还要清楚如何创造数据
导读:企业每天都受到大量信息的冲击。这些信息由邮件、社交媒体、网站和移动应用等等生成,来自于它们业务的各个方面。
业界估计数据每年的增长率在30%到50%之间,对于许多企业来说,每年将增长上PB的数据量。问题显然不是缺少数据,而是缺少“正确”的数据。
根据埃森哲近期的调查显示,仅40%的管理者认为他们现有的分析应用能够识别有效数据,只有20%对现存分析应用支持的业务成果表示“非常满意”。毫不夸张的说,这样的结果是很不令人满意的。
拥有正确的数据能够帮助企业制定决策。然而,获取正确的数据却要求能够搭建、配置、装备和升级应用的基础设施。应用程序在必须满足功能需要的同时,还需要提供能够解决企业关键问题的数据。
《埃森哲技术视野2013》是一份关注企业IT未来的报告,该报告认为企业满足自己对于“数据分析设计”的需要是公司能够利用技术和软件提高竞争力、协作能力和业务成果的主要方式之一。
很过公司头脑中还没有具体的问题就去捕捉数据。所以当把数据作为战略性业务决策的投入来分析时,比如进入一个新的市场或为新产品估价,信息中断的问题就会显现出来,导致错失良机。
企业面临的已经不再是技术障碍,而是如何富有战略前瞻性地组织正确的问题。该结果就是数据供应链的第一步,应用程序服务的不仅是用户,还有业务。
要想把应用设计的焦点从功能为主转变到分析为主,CIO可以采取如下措施。
很多软件供应商正在准备通过应用编程接口(API),允许用户更容易地从软件产品,包括软件应用中提取数据。公司因此理所当然地要考虑它们应该从系统中收集哪些数据,才能解决公司面临的最重要的问题。
一些公司也在为它们的定制应用增加设备,设计团队收集交易、活动或日志等信息并将其制成报表,使用传感器技术填补出现的数据间断。
例如,UPS开发了一种应用于车内传感器和手持电脑的系统,追踪船只信息和车辆行驶情况。UPS发现,左转弯(在美国)会延缓送货、增加燃油成本。这一信息的发现为UPS每年节省了九百万加仑的燃料。
培育和收集服务于销售和市场的信息能力代表着公司抓取数据的机会。这些数据能够解决很多关于消费者的长时间没有解决的问题。
2020年产业评估预计关联设备将会达到300亿到500亿,那时一定会产生大量的来自于社交媒体、移动应用和传感器技术的数据以及非结构化数据。但是公司需要从数据中选取正确的数据,之后启动获取数据的程序。
一旦发现正确的数据,就应该像在一条流水线上处理来自多个供应商的汽车零件一样处理它们。
数据被过滤到供应链之后,应用程序就可以对它进行操作,增加其他数据、用更新的数据将其升级、将其转变成新的产品。
通过目的明确地收集数据,公司能够获得更好的数据和更深刻的洞察力。之后可以周期性地回顾公司面临的问题,并随着业务情况和战略命令的变化提取新的数据。
这意味着将企业文化向以洞察力为驱动的方向转变。这需要将业务功能和IT结合,并鼓励收集更好更即时的数据。
通过部署这些功能,业务将逐渐变为完全以洞察力为驱动。这意味着发展超越用户功能的应用和产品,让它们积极地满足数据分析的需要,以便于不仅能够生产更多的数据,还能生产能够解决主要业务问题的数据。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07