
不仅要清楚如何收集数据,还要清楚如何创造数据
导读:企业每天都受到大量信息的冲击。这些信息由邮件、社交媒体、网站和移动应用等等生成,来自于它们业务的各个方面。
业界估计数据每年的增长率在30%到50%之间,对于许多企业来说,每年将增长上PB的数据量。问题显然不是缺少数据,而是缺少“正确”的数据。
根据埃森哲近期的调查显示,仅40%的管理者认为他们现有的分析应用能够识别有效数据,只有20%对现存分析应用支持的业务成果表示“非常满意”。毫不夸张的说,这样的结果是很不令人满意的。
拥有正确的数据能够帮助企业制定决策。然而,获取正确的数据却要求能够搭建、配置、装备和升级应用的基础设施。应用程序在必须满足功能需要的同时,还需要提供能够解决企业关键问题的数据。
《埃森哲技术视野2013》是一份关注企业IT未来的报告,该报告认为企业满足自己对于“数据分析设计”的需要是公司能够利用技术和软件提高竞争力、协作能力和业务成果的主要方式之一。
很过公司头脑中还没有具体的问题就去捕捉数据。所以当把数据作为战略性业务决策的投入来分析时,比如进入一个新的市场或为新产品估价,信息中断的问题就会显现出来,导致错失良机。
企业面临的已经不再是技术障碍,而是如何富有战略前瞻性地组织正确的问题。该结果就是数据供应链的第一步,应用程序服务的不仅是用户,还有业务。
要想把应用设计的焦点从功能为主转变到分析为主,CIO可以采取如下措施。
很多软件供应商正在准备通过应用编程接口(API),允许用户更容易地从软件产品,包括软件应用中提取数据。公司因此理所当然地要考虑它们应该从系统中收集哪些数据,才能解决公司面临的最重要的问题。
一些公司也在为它们的定制应用增加设备,设计团队收集交易、活动或日志等信息并将其制成报表,使用传感器技术填补出现的数据间断。
例如,UPS开发了一种应用于车内传感器和手持电脑的系统,追踪船只信息和车辆行驶情况。UPS发现,左转弯(在美国)会延缓送货、增加燃油成本。这一信息的发现为UPS每年节省了九百万加仑的燃料。
培育和收集服务于销售和市场的信息能力代表着公司抓取数据的机会。这些数据能够解决很多关于消费者的长时间没有解决的问题。
2020年产业评估预计关联设备将会达到300亿到500亿,那时一定会产生大量的来自于社交媒体、移动应用和传感器技术的数据以及非结构化数据。但是公司需要从数据中选取正确的数据,之后启动获取数据的程序。
一旦发现正确的数据,就应该像在一条流水线上处理来自多个供应商的汽车零件一样处理它们。
数据被过滤到供应链之后,应用程序就可以对它进行操作,增加其他数据、用更新的数据将其升级、将其转变成新的产品。
通过目的明确地收集数据,公司能够获得更好的数据和更深刻的洞察力。之后可以周期性地回顾公司面临的问题,并随着业务情况和战略命令的变化提取新的数据。
这意味着将企业文化向以洞察力为驱动的方向转变。这需要将业务功能和IT结合,并鼓励收集更好更即时的数据。
通过部署这些功能,业务将逐渐变为完全以洞察力为驱动。这意味着发展超越用户功能的应用和产品,让它们积极地满足数据分析的需要,以便于不仅能够生产更多的数据,还能生产能够解决主要业务问题的数据。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23