
SAS 引领大数据分析新浪潮_数据分析师
2014 SAS中国用户大会暨商业分析领袖峰会在京举行
中国北京,—今天,以“大数据分析—知变与机遇”为主题的第二届SAS中国用户大会暨商业分析领袖峰会在北京圆满落幕。近千位SAS全球大数据专家、SAS中国用户、合作伙伴、学者、媒体与行业分析师齐聚一堂,探讨大数据分析技术趋势与应用热点等话题,发掘大数据大分析的未来机遇。
精英云集 智慧碰撞
此次峰会在SAS大中华区总裁吴辅世先生的致词中拉开帷幕。他表示:“大数据已然是目前主导商业领域的最热门发展趋势之一。在全球数据总量呈指数增长同时,我们也思考如何利用大数据带来的巨大机遇,创造实实在在的价值。SAS认为数据创造价值体现在三个层面:差异化、创新和转型。了解过去,掌握现在,预测未来,是达到业务差异化的基本,也是成就创新的源动力,更是真正达成转型的要点。而这三大目标的实现都离不开强劲的分析技术,高性能分析成为释放大价值的关键。今天,借助SAS论坛这一平台,我们将深入剖析大数据如何助力各行业企业成功转型及把握机遇。”
《经济学人》亚洲区信息通讯行业首席分析师Ross O'Brien在演讲中表示:“中国经济正在经历转型,虽然增速放缓,但是增长质量更高,应当抓住经济增速放缓的机遇推进经济转型,并着重发展数字经济。中国正在被国内外科技领军企业视为尖端科技研发的首选停靠港,‘全球创新中心’的地位正在逐渐树立中。在席卷全球的大数据浪潮中,利用大数据驱动IT创新成为中国发展新机遇。十二五专项规划中关于发挥地方政府积极性,增加对高新技术产业集群以及相关基础设施投入的指示,也将为大数据在本地的发展注入动力。”
2014年,“大数据”作为一个技术热词的吸引力将消散,新的相关技术和应用层出不穷。分布式计算开源框架Hadoop成为创新热点之一。SAS大数据研究与发展全球副总裁Paul Kent先生在主题演讲中表示,随着数学计算正在不断向前发展,新一代的分析平台Hadoop等采用了海量并行集群技术。通过将数据分布到多个节点,然后将分析计算任务发送到这些数据上,而不是采用其它的传统技术,就可以快速拥有极为强大的计算能力。通过转变成这种新型的计算方式,可以在全量数据上展开交互式的可视化数据探索,同时轻松使用那些以前难以驾驭的先进分析模型。
互联网和移动设备支持的数字技术拓宽了营销渠道,重塑了整合营销。SAS全球整合营销管理业务咨询总监Rene van der Laan认为:“大数据的时代,企业得以采集渠道多样、类型丰富的客户数据,并据此判断顾客喜好。仅仅获取是不够的,还要对数据进行有效的挖掘和分析,并以近乎实时的速度做出决策。在细分群体基础上采取针对性行动,发掘客户新需求,进行个性化营销和业务创新,这都是大数据为整合营销带来的便利与新变化。”
此外,针对行业的讨论也是大会的一大重点。就电信业而言,4G时代网络数据和服务将呈现井喷式爆发。手机和平板电脑取代PC成为主流的互联网接入设备,带来了数据流量大幅度的增加,这给电信运营商带来了巨大的机遇和挑战。大会专题讨论着眼于刚刚启幕的4G时代,讨论如何对网络进行有效的预报和优化,为客户提供畅通的网络服务,并着眼于客户需求,提供定制化服务。
SAS全球保险行业解决方案资深顾问Stuart Rose先生莅临现场,带领与会嘉宾进入“保险行业大数据分析的成功之旅”。Rose先生指出,大数据时代,保险行业面临新机遇:更充足的数据为开展精准营销开辟新途径,也为精准定价提供了依据。风险智能更是大大提升保险业风险识别和反欺诈的能力。车载信息技术等新技术的出现,加快了保险企业对于大数据分析和云技术的应用。未来大数据分析在保险业的应用还将更为深入和广泛,保险企业对于数据的驾驭能力也将成为其核心竞争力之一。
持续创新 引领变革
SAS每年将营收的约25%投入到研发中,通过持续创新为数据分析的升级换代注入源源不断的动力。据IDC报告显示,全球越来越多的企业对SAS高级分析产品的依赖超过任何其他品牌。SAS在高级分析软件市场上的份额为36.2%,较2012年的35.3%进一步上升,比所列举的其他主要高级分析软件厂商的全部市场份额还高。
本届大会设置10余个SAS创新产品互动体验区,展示SAS最新科研成果。
- SAS可视化分析(SAS® Visual Analytics):基于强劲内存分析技术的新版本SAS可视化分析解决方案能够帮助客户快速锁定新的商业机遇。不管企业规模大小,客户都可以通过部署SAS可视化分析获取商业价值。SAS与Hadoop生态系统中知名公司Cloudera和Hortonworks展开了战略合作,客户可以在云环境中使用可视化分析。
- SAS客户智能(SAS® Customer Intelligence)升级后的SAS客户智能解决方案可采集来自社交网络、移动设备和电商平台等多渠道的更丰富客户数据,在分秒间以“一图胜千言”的直观方式展现分析结果,驱动更优决策,帮助营销人员进行精准营销,创造多渠道互动。
除了对产品进行不断升级完善,SAS紧随行业潮流,强化科研,实现新一轮技术突破与创新。
- SAS® In-Memory Statistics for Hadoop:2014年,SAS将提供基于SAS内存分析技术,并适用于开源框架Hadoop的交互式分析编程环境的SAS In-Memory Statistics for Hadoop,为大数据分析提供更有力的工具。
- SAS® Visual Statistics:此外,即将在七月正式面世的SAS® Visual Statistics,帮助统计工作者和数据科学家通过部署表格界面,快速分析任意规模的复杂数据。由SAS可视化分析驱动的SAS® Visual Statistics协助用户及时发现变量之间的关联性并迅速做出利于收益的商业决策,允许多名用户在大量多样化数据基础上建立和改进预测模型,并进行包括回归、聚类和分类等多种类型的分析。新软件搭载在革命性的SAS内存架构中,一次载入数据便能应用到多次反复的分析任务中。
成立三十八年以来,SAS一直致力于为行业用户提供最前沿的技术和见解,推动大数据分析在行业内的技术变革与应用创新。出席此次论坛的中国用户均对SAS的创新力与可信赖的解决方案赞誉有加,并期待与SAS一起用大数据分析抓住无限商机。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29