京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析与数据挖掘的企业应用价值_数据分析师
数据分析和挖掘应用的商业价值问题在哪,一是说数据分析和挖掘在企业,如果只有知识发现,知识应用没有搞起来,企业还是没有体会到数据的价值;二是说数据分析和挖掘,是否看在多么牛的互联网巨头工作的背景,还是要有扎实的数据变现能力?
第一个问题,还得从第三方数据分析服务,与企业内部数据分析分开来说,否则没有意义。第二个问题,就看是谁在主导找数据分析的人,到底是HR或没想清楚如何用数据的高层,还是对数据分析和挖掘已经有了明确目标的高层,这才是关键!!像某些公司组织团队,唯互联网巨头背景论,或者唯某种技术论,都很难对企业有实质的帮助,只是满足他们的个人愿望罢了,而实际情况早已证明了这点。
个人很欣赏对数据分析有明确目标和需要的领导者,如果资深专业的数据分析和挖掘人士服务于这样的业务领导者,为他们的团队服务,将会擦出耀眼的火花,必将是大家一起与业务、与公司一起成长,突出市场重围。
第三方数据分析服务,个人以为属于技术派,说技术派并非他们不需要懂业务,而是他们的价值更突出在数据挖掘和分析技术上,而非对业务的深入解析。所以每当有人问我某数据服务或广告公司找数据总监是否合适人选介绍,我回答是,像我这样的可以上,但这并非我们最强项,最好找科班数据挖掘出身的,他们的核心价值是在技术,而非技术与业务的综合。
企业内部的数据分析和挖掘,个人以为属于商业价值导向派,或者叫业务派。如果把商业逻辑前因后果梳理不清楚,没有熟悉运营的细节,那么他的挖掘技术发挥得价值,恐怕还不如普通数据展现。
有朋友会问,什么是商业价值导向,是不是我把商业问题暴露出来,就OK了?显然是不够的,这样容易出现,你暴露的问题是“公开的秘密”,业务部门需要的是解决问题的办法,而不是仅仅暴露问题!那如何做到数据的商业价值最大化呢?那就是把问题彻底解决!辅助(一个或多个)业务部门,把问题都解决了。
有朋友说,解决问题容易啊,BI作为IT工具,业务部门自己看着数据解决啊!我每次都说,非也,如果这样就OK,那么业务部门提需求,BI做分析开发,应该是完美的模式,但为啥这样做的公司,数据都应用很初级?原因需要细细道来。
就拿大家都常举例的转换率问题来说,务实的公司会先从零售指标销售收入、利润、库存来向下推转换率,但我们就按很多电商领导关注的转换率来谈吧。
假设某周转换率明显下降,需要怎样的分析才好呢,业务部门提需求,拿一些数据能搞定么?我们假设订单转换率由3%下降到1.5%,那么从业务角度,会有哪些可能性?
如何有效解决问题?如果我们对KPI异常的判断不客观,那么就无法准确定位问题,更无法帮助业务部门解决问题!同时说等业务部门提需求,由BI来分析的朋友,请问转换率问题,上述几种常见原因的不同分析需求,业务部门谁能提出全面的需求?
如果没有全面的需求,那就得有全面的分析,和解决方案出来,协助业务部门彻底解决问题。例如广告误点导致转换率低,但如果总体订单不变的情况下,是否广告投入偏高,如果广告投入偏高,则需建议推广部门和广告公司重谈商务,降低费用,或者另找推广途径,来提高广告ROI。这就是与业务部门一起共进退的案例之一,如果网站、商品问题,同理!
当然需要分析技术和挖掘算法人才,但要想专人才发挥足够的作用,必须有能理清楚整体业务,包括战略战术、运营,有熟悉分析技术和挖掘算法的人,来带领数据商业价值最大化,因为刚才我分析过,靠业务部门提需求的模式,是搞不定数据价值问题的。
我和一位数据界朋友交流的时候说,假如你每次想让你的分析都落地,产生商业价值,最好的办法就是熟悉业务运营,熟悉业务部门的运作方式。例如你发现近期销售降低的因素之一,是商品访问平均深度环比降低了20%,这对很多数据分析师来说,已经做的很不错了。且慢,这对于业务部门来说,还是很“虚”的说法。
像这个案例,你是给网站商品管理的同事说的,他们看到这个数据,最大的可能性就是陷入沉思,因为他们可能找不到突破口,来如何布局商品,才能提高访问深度。假如你理解他们的工作是组织新老品,组织引流、要利润、高利润不同商品组合,商品组合折扣等等运营工作,那么你的分析就会更贴近他们的实际应用。
那么解决这个问题,就是要发现商品部门能解决的原因,到底是商品布局层次出了问题,还是不同分类的品类组合出了问题,当这些问题表述清楚后,商品运营人员自然知道原因出在哪里,如何解决!!
总结
不同公司的价值导向不同,他们需要人才会不同,需要的价值展现形式也不同。第三方服务公司需要的技术、算法为主导,有一定行业业务知识为辅,有技术核心竞争力。但如果对行业业务有更深入理解,就会分析出更有参考和咨询价值的数据,体现出第三方公司更高的价值。 企业内部需要的熟悉业务和运作的人,但同时也要熟悉技术和算法,当业务推动不是问题,技术和算法就很重要,当技术和算法有储备,那么能熟悉业务并能用好技术算法就很重要。简单化数据分析和挖掘价值,以及人才判断,无非变现出来的就是企业对数据分析和挖掘迷茫甚至无知,所以才认为背景能解决一切。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22