
直面大数据人才方阵培养难题_数据分析师
信息技术发展至今,已使战争体系的“眼”看得更远,“耳”听得更清,“拳”打得更准,“身”藏得更隐蔽……但某种程度上,诸如在复杂战场上该打击哪些目标,以什么力量打,打到什么程度等关系制胜全局的问题,目前仍主要依靠指挥员主观经验来判断。而大数据存在的意义,就在于从本质上提高战争体系的智能性,更好地探寻并利用现代战争制胜机理。
近年来,我军在作战训练数据建设运用等领域取得长足进步,但与大数据时代战争的要求相比仍存差距,一些基础性根本性问题至今仍缺少令人满意的答案。如到底该采集哪些数据?如何高效采集数据?怎样保证各级各类数据的真实性?如何分级管理数据?怎样处理数据共享与数据安全的关系?如何针对不同战争态势有效应用数据?探索这些问题离不开高素质的人。换言之,要想真正探寻现代战争制胜机理,离不开大数据技术;要真正掌握大数据技术,离不开大数据人才方阵培养。而要加强大数据人才培养,必须直面当前我军大数据人才培养“四难”:
破解院校培养难。受条块分割的管理体制所限,目前我军军兵种和军(士)官岗位设置,均缺乏对口数据岗位,仅有个别单位设置了数据中心等机构。这类岗位设置,直接影响到院校招生培养计划,导致院校无法合理招收数据专业学员,相关学科建设受到重重限制。受计划主导的教育管理方式所限,当前快速发展的信息技术人才需求与军事教育审批环节间出现了令人深思的矛盾,导致大数据军事人才培养难以避免滞后性。受指技分离的人才培养模式所限,在现行院校管理体制下,指挥院校与技术院校间很难达成深度协作,从而导致大数据教育基础条件的缺失。解决上述难题,可考虑允许部分军事院校借鉴地方普通高校自主招生和灵活设置专业模式,及时设置大数据培养等相关专业,提高对人才需求变化的快速反应能力。
破解实践学习难。当前,大数据实践教学面临多种困境。受军事大数据建设水平所限,军事大数据建设在我军起步晚,众多建设细节需要摸着石头过河,目前仅在部分领域取得初步成效,数据量亟待提升,数据的可用性和真实性有待验证,还难以提供良好的实践学习平台。受军事大数据建设的复杂性所限,军事大数据点多面广,内容庞杂,横向上涉及众多机关、部队、院校和科研机构,纵向上包括数据采集、数据管理和数据应用等多个环节。不同单位的分工不同,甚至大相径庭,从而使系统实践学习面临较多困难。解决大数据教学实践难,必须切实培养依据大数据决策的文化,并考虑尽快建立大数据教学实验中心,理顺学员实践渠道和流程,促进军事大数据实质发展。
破解人才引进难。大数据技术涉及应用数学、统计学、人工智能、软件工程和管理科学等多领域专业知识,人才培育复杂,在我国尚处于起步阶段。而社会各行业各领域对大数据人才的需求却很迫切,在激烈的人才争夺中,军事领域并不占明显优势。尤其是,大数据人才是国际社会争夺的主要人力资源之一。截至今年3月,美国新增数据分析高管职位的数量已占全世界的44%,但美国只能提供23%,不足的部分必然会从全世界网罗。国际大数据人才资源争夺,形势更为严峻。而要想吸引和保留大数据人才,必须以多种优惠条件吸引人才,并为其提供施展才华的广阔平台,尽可能地留住人才。
破解军民共育难。近年来,我国依托普通高校培养国防生的路子越走越广,为解决我军急需的专业人才发挥了重要作用。但目前国防生的培养多以本科阶段为主,较少涉及研究生层面。而由于大数据技术的前沿性和复杂性,在本科阶段设置该学科培养人才的难度较大,导致依托普通高校培养专门大数据人才条件不够理想。同时,我军人才培育以计划为中心,而普通高校和成功企业等领域的人才培育则强调以市场为导向,这种指导思想上的显著差异也使军民共育人才的政策制度存在某些缺失或错位。可以想见,如果不重视发挥杠杆的调节作用,大数据人才培育的效益恐怕难以有效提高。
战争的较量归根结底是人才的较量,深化军事斗争准备,提高打赢现代战争能力,需要我们切实研究破解大数据人才培养难题,加快打造大数据人才方阵。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04