
直面大数据人才方阵培养难题_数据分析师
信息技术发展至今,已使战争体系的“眼”看得更远,“耳”听得更清,“拳”打得更准,“身”藏得更隐蔽……但某种程度上,诸如在复杂战场上该打击哪些目标,以什么力量打,打到什么程度等关系制胜全局的问题,目前仍主要依靠指挥员主观经验来判断。而大数据存在的意义,就在于从本质上提高战争体系的智能性,更好地探寻并利用现代战争制胜机理。
近年来,我军在作战训练数据建设运用等领域取得长足进步,但与大数据时代战争的要求相比仍存差距,一些基础性根本性问题至今仍缺少令人满意的答案。如到底该采集哪些数据?如何高效采集数据?怎样保证各级各类数据的真实性?如何分级管理数据?怎样处理数据共享与数据安全的关系?如何针对不同战争态势有效应用数据?探索这些问题离不开高素质的人。换言之,要想真正探寻现代战争制胜机理,离不开大数据技术;要真正掌握大数据技术,离不开大数据人才方阵培养。而要加强大数据人才培养,必须直面当前我军大数据人才培养“四难”:
破解院校培养难。受条块分割的管理体制所限,目前我军军兵种和军(士)官岗位设置,均缺乏对口数据岗位,仅有个别单位设置了数据中心等机构。这类岗位设置,直接影响到院校招生培养计划,导致院校无法合理招收数据专业学员,相关学科建设受到重重限制。受计划主导的教育管理方式所限,当前快速发展的信息技术人才需求与军事教育审批环节间出现了令人深思的矛盾,导致大数据军事人才培养难以避免滞后性。受指技分离的人才培养模式所限,在现行院校管理体制下,指挥院校与技术院校间很难达成深度协作,从而导致大数据教育基础条件的缺失。解决上述难题,可考虑允许部分军事院校借鉴地方普通高校自主招生和灵活设置专业模式,及时设置大数据培养等相关专业,提高对人才需求变化的快速反应能力。
破解实践学习难。当前,大数据实践教学面临多种困境。受军事大数据建设水平所限,军事大数据建设在我军起步晚,众多建设细节需要摸着石头过河,目前仅在部分领域取得初步成效,数据量亟待提升,数据的可用性和真实性有待验证,还难以提供良好的实践学习平台。受军事大数据建设的复杂性所限,军事大数据点多面广,内容庞杂,横向上涉及众多机关、部队、院校和科研机构,纵向上包括数据采集、数据管理和数据应用等多个环节。不同单位的分工不同,甚至大相径庭,从而使系统实践学习面临较多困难。解决大数据教学实践难,必须切实培养依据大数据决策的文化,并考虑尽快建立大数据教学实验中心,理顺学员实践渠道和流程,促进军事大数据实质发展。
破解人才引进难。大数据技术涉及应用数学、统计学、人工智能、软件工程和管理科学等多领域专业知识,人才培育复杂,在我国尚处于起步阶段。而社会各行业各领域对大数据人才的需求却很迫切,在激烈的人才争夺中,军事领域并不占明显优势。尤其是,大数据人才是国际社会争夺的主要人力资源之一。截至今年3月,美国新增数据分析高管职位的数量已占全世界的44%,但美国只能提供23%,不足的部分必然会从全世界网罗。国际大数据人才资源争夺,形势更为严峻。而要想吸引和保留大数据人才,必须以多种优惠条件吸引人才,并为其提供施展才华的广阔平台,尽可能地留住人才。
破解军民共育难。近年来,我国依托普通高校培养国防生的路子越走越广,为解决我军急需的专业人才发挥了重要作用。但目前国防生的培养多以本科阶段为主,较少涉及研究生层面。而由于大数据技术的前沿性和复杂性,在本科阶段设置该学科培养人才的难度较大,导致依托普通高校培养专门大数据人才条件不够理想。同时,我军人才培育以计划为中心,而普通高校和成功企业等领域的人才培育则强调以市场为导向,这种指导思想上的显著差异也使军民共育人才的政策制度存在某些缺失或错位。可以想见,如果不重视发挥杠杆的调节作用,大数据人才培育的效益恐怕难以有效提高。
战争的较量归根结底是人才的较量,深化军事斗争准备,提高打赢现代战争能力,需要我们切实研究破解大数据人才培养难题,加快打造大数据人才方阵。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-29从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-292025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-29PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-29t 检验与 Wilcoxon 检验:数据差异分析的两大核心方法 在数据分析的广阔领域中,判断两组或多组数据之间是否存在显著差异是一项 ...
2025-07-29PowerBI 添加索引列全攻略 在使用 PowerBI 进行数据处理与分析时,添加索引列是一项极为实用的操作技巧。索引列能为数据表中的每 ...
2025-07-29