京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据开放可提升政府公信力_数据分析师
1月5日,美国哥伦比亚新闻评论网发表的文章《21世纪的新闻审查》(21st-Century Censorship)提出,互联网技术的发展产生了越来越多的媒体平台和自媒体。有观点认为,在大数据时代下,政府对信息的监管和审查会变得日益乏力。然而,学者们则认为,事实可能恰恰相反。
政府与媒体关系发生变化
美国杜克大学斯坦福公共政策学院教授菲利普·班尼特(Phillip Bennett)表示,对新闻业来讲,首先,互联网对新闻媒体的影响是破坏性和颠覆性的,这是不可阻挡的趋势;其次,它催生了互联网通信工具的创新。同样,政府公共部门与媒体间的关系也发生转变。政府不再像以前一样“单纯”地面对并处理与几家主流媒体间的关系,而是面临着由公共舆论所引发的更加复杂多样的挑战。
据美国互联网数据中心数据显示,互联网数据每年约增长50%,每两年便翻一番,而目前全球90%以上的数据是近几年才产生的。有人曾预言,随着互联网和大数据平台的日趋开放,面对海量数据的“无从监管”,政府对新闻信息的监管和审查将随之消失。但事实上,大数据概念从诞生开始,政府监管在其中扮演的角色从未被低估。正如大数据技术的战略意义不在于掌握庞大的数据信息,关键在于对这些有意义的数据进行专业化处理的能力。比如,对新闻信息的处理,就不仅仅是个技术问题。
班尼特表示,在“自由的”网络世界和各国政府对海量新闻信息源的处理过程中,我们看到了这个时代的一种悖谬的“传播风格”,一方面,人们更加善于表达自己,言论途径更加开放;另一方面,政府监管随着大数据的发展在某些方面“愈加严格”。
“当前,一个事实是:监管和审查随着信息时代的发展而不断完善。”班尼特说,理论上,新技术的发展应该使新闻信息的审查更加困难,并最终成为“不可能的审查”,政府难以控制信息的流通。然而,现实中越来越多的政府开始加大监管、审查新闻及各路媒体信息的力度,不仅是发展中国家,也包括发达国家,尤其是在互联网安全意识的提高下,对新媒体的审查越来越“用力”。
英国伦敦城市大学学者格兰达·库珀(Glenda Cooper)日前在澳大利亚对话网站刊文表示,全民新闻时代的来临,打破了传统的派记者去现场、报道、发布新闻的流程,现在很多记者都是在办公室里从社交媒体中搜索有价值的新闻。但这种新的方式,在新闻的隐私性、验证真伪、品位方面都有值得质疑的地方。自媒体新闻往往是倾向性明显的新闻,常伴随伪造、暴力的图片,给社会造成不良影响。
据了解,目前,许多国家通过立法加强对新闻媒体行为的规范,一方面是制定专门的新闻法规,如瑞士、法国、意大利、丹麦等国;另一方面,即使没有整体立法,但相关法律条文“散见”各处,如美国、英国、日本等国,尤其是针对互联网信息的传播。
杜克大学教授莫伊塞斯·纳伊姆(Moises Naim)表示,各国政府正在从数字革命的“观众”转变为数字时代先进技术的最早采用者,政府越来越有能力掌握新闻记者和自媒体的情况,并在一定程度上控制信息的流通过程和方式。政府的监管能力发生了变化,与媒介的关系也发生了变化。
监管方式的模仿与创新
纳伊姆说,今天,一方面许多国家的政府正在使信息更加开放;另一方面政府也需要在监管和审查方式上进行创新。当前,在一些国家,如匈牙利、厄瓜多尔、土耳其和肯尼亚,政府正在模仿俄罗斯等国家,对重要新闻进行更大程度的管控,并力图建立国家媒体品牌的影响力。
“虽然互联网的发展是一个全球化的趋势,但对于信息的监管和审查是每个国家或地区的自主行为,比如,在匈牙利,政府规定权威媒体有权收集记者的详细信息、广告内容和社论内容。”纳伊姆说,我们无法单纯以“新闻自由”为幌子全盘否定政府对媒体和信息的审查和监管行为,尤其是在今天的海量数据面前,每个国家都要考虑互联网时代的信息安全。纳伊姆反问道,当网民在网络平台上遭受他人肆意而名目张胆的人身攻击时,是否还能看到“言论自由”的积极面?
政府监管将更加透明化
许多学者认为,不论新闻及其他信息的监管和审查面临多少偏见和争议,在大数据平台迅速发展和广泛应用背景下,政府监管方式都将更加透明。
大数据的开放能够增加政府的透明度,提高政府的公信力。纽约大学法学院教授贝丝·诺维克(Beth Novick)表示,数据的开放可以让政府公职人员和民众一起参与进来,解决政府无法完成的、棘手的问题,更广泛地发挥群众力量,借助大数据平台进行更好的社会管理。
当然,大数据的存储和处理模式,不可避免地会带来信息安全、隐私保护等问题。一方面,大数据时代的国家信息安全需要引起政府高度重视,应大力推动国家的网络信息安全建设;另一方面,从全球范围来看,目前已有50多个国家依靠法律形式规范个人信息数据的管理与使用。显然,大数据时代,人们的隐私应该受到更好的法律保护。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20在商业数据分析领域,“懂理论、会工具”只是入门门槛,真正的核心竞争力在于“实践落地能力”——很多分析师能写出规范的SQL、 ...
2025-11-20在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10