京公网安备 11010802034615号
经营许可证编号:京B2-20210330
物联网超越大数据成为最热门技术_数据分析师
据福布斯中文网消息,市场调研公司高德纳(Gartner)在上周发布了最新的新兴技术成熟度曲线(Hype Cycle for Emerging Technologies)。去年,大数据享有至高无上的地位,处于高德纳所说的“期望膨胀高峰期”。但现在,大数据已经跌入“幻灭的低谷期”。物联网取而代之,占据了成熟度曲线的最高点。在2012年和2013年,高德纳的分析师们认为,物联网还需要10年以上的时间才会达到“生产率稳定期”。但今年,他们认为物联网只需要5到10年时间就会达到这个最终成熟阶段。高德纳表示:“在我们、我们客户和我们合作伙伴的商业和IT版图上,物联网正成为一个充满活力的组成部分。”
今年成熟度曲线上的一个新面孔是“数据科学”,预计它将在2到5年时间里达到稳定期。与其说它是一项或一套具体的技术,不如说是一个处理大数据的学科。值得指出的是,盖特纳仍然认为大数据还有5到10年时间才会达到稳定期。盖特纳在《成熟度曲线特别报告》(Hype Cycle Special Report)中写道:“虽然对大数据的兴趣依然不减,但它已经离开高峰期,因为该市场已经安定下来,有了一整套合理的方法,新的技术和实践被添加进现有方案。”这话似乎说得有点过早,在某种程度上与5到10年才会成熟的判断相矛盾,这说明高德纳并不是完全确信该市场已经“安定下来”。
物联网超越大数据成为最热门技术
特别报告是高德纳编写的免费文档,很好地概述了“119个领域里2,000项技术、服务和趋势的市场推广和价值认知”。高德纳分析了从2013年到2014年在成熟度曲线上所处位置、达到稳定期所需时间、曝光度和采纳度方面变化最大的技术、服务和学科,发现他们所说的“力量的四条纽带(社交、移动、云端和信息)”与成熟度曲线高峰期部分里那些变化最明显的技术高度相关。高德纳特别指出,数字业务和物联网是对成熟度曲线早期阶段具有很大影响力的两个趋势。
与分析学和移动基础设施一样,物联网也是从创新的萌芽期(成熟度曲线的第一个阶段)向期望膨胀后的高峰期迅速移动的推动力之一。例如,分析能力和工具即服务——盖特纳称之为商业分析平台即服务(baPaaS)——向上移动了12个位次。另一个例子是信息技术(IT)与运营技术(OT)的融合移动了9个位次。盖特纳表示,IT与OT的融合是指标准化IT技术越来越多地用于OT供应商的产品,IT与OT的结合是组织机构对这些变化的反应。越来越多的可用数据和越来越复杂的相关分析是成熟度曲线中某些趋势迅速崛起的推动力。
对于高德纳对新兴技术起伏的判断,皮尤研究中心(Pew Research Center)的互联网、科学和技术研究主管李·雷尼(Lee Rainie)作出了如下评价:“虽然成熟度曲线不是严格地以数据为基础,但高德纳分析师们对技术采纳状况作出的判断常常与其他优秀观察者的看法相一致。在特定创新应该处于曲线什么位置的问题上,有时会有争议,但该曲线所勾勒的总体趋势很少受到质疑。”
2014年标志着新兴技术成熟度曲线这个有用的工具已经问世20周年。该工具旨在跟踪人们对技术和商业创新的周期性兴趣爆发和经常性失望的起起伏伏。高德纳副总裁兼著名分析师贝特西·伯顿(Betsy Burton)谈到了成熟度曲线作为跟踪创新及其商业影响力如何逐渐演变的工具,以及2014年版的新变化。伯顿说:“很多时候,我们看到的是人们的注意力从支持信息、应用、云端系统和大数据的基础设施,转向我们如何运用云计算、大数据和社交的某些能力来解决现实的商业问题。我们正目睹人们的注意力从技术本身转向将这项技术实际运用到现实的商业需求和商业成果中。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27