
“云世界”带来了巨量且巨大的数据交易,应对、分析这庞大的数据集,并将其转化成企业可从中辨识出的商业价值,才是现如今的重大问题。对此,试问自己,对大数据的到来有没有做好准备,企业是否已具备挖掘大数据核心价值的能力?我们会不会再次遗漏大数据商机呢?
能否抓住大数据
有关云世界中巨量资料的种种议题中,最显而易见的便是该如何处理并分析它,然后转化成企业可以从中辨识出的有价值的信息,这其中势必会有一段滞延时间。 若是信息未能及时取得,导致大数据可带来的商机遭受忽略,将在激烈的市场竞争中,置企业于不利地位。同时,在整个大数据生态系统中,技术纯熟度是跨越数据 与企业营运之间鸿沟的关键驱动力。我们所需要的是,可以更快速地提供完善的数据处理方案,使企业不仅可以应付未来的需求,更能立即解决现在的问题。
企业的需求若渴与大数据带来不可估量的价值才是最核心的,解决当前大数据所面临的挑战,并改善企业的分析获利能力才是关键。扪心自问,总是谈论应该如何迎接大数据的我们,是否真正解决了当前的问题与挑战,是否改善了企业捕获大数据的能力呢?
解决数据差异性
传统BI/Data Warehouse主要擅长处理结构化数据,也就是一般常见的关系数据库里所存放的数据,但对于半结构化及非结构化数据的解决能力还不是很强,更不用说要承载半结构化及非结构化数据所伴随而来的巨量和巨大。
在大数据的处理能力中,企业应做好解决大量半结构化与非结构化数据的准备,这也是为了弥补传统BI/Data Warehouse能力空缺。落实到具体,企业在具体运用时,可将内部或外部巨量的半结构化与非结构化数据进行储存、运算、处理与分析,然后把运算与处理 分析的结果以结构化的格式,让BI/Warehouse获取,或是直接可提供搜索与搜寻。
欲淘金 先淘“器”
针对大数据的处理方案,企业所能寻求的便是各级别厂商所带来的数据数解决方案,但企业在选择的同时,也面临着不是技术效能的无法支撑,就是企业需要付出 天价的授权费。既然欲抓住大数据商机,在选择解决方案的时候,一定要谨慎再慎重。切勿成也大数据,败于无法破解。那么,适合我们的淘金器应该是怎样的呢?
首先,我们要给大数据解决方案找定位:ETE全程照料,即End-to-End大数据解决方案,也叫端到端全程照料。大数据解决方案应从行业解决方案着手,直接解决企业的待定问题,提升特定商业环节的价值,这才是我们需要并值得付费购买的地方。
其次,云部署给企业网络注入了新的架构与元素,我们要考虑到这对新一代网络的管理和运维能力,例如针对软、硬件做特殊性能调校、简化大数据处理集群部署 与运维、线性横向扩充能力(Linear Scale-out),以及可以扩充至上千节点的产品才是适合大数据,适合未来的。
最后我们要着实与企业网络的实操性,既然针对大数据有所付出,那么,所得的回报中必定要简化并降低大量部署与运维的时间成本、并快速上线运作。将第一时间留个“挖掘”工作,将繁杂的技术与系统细节留给“器”。企业最值得思索与创造的“金子”,才是挖掘出的数据价值。
大数据的到来,不由得我们选择逃避。对于现如今的商业环境来说,逃避大数据就意味着失败,迎接它,探求它的价值,才是企业挖掘大数据,创造更高价值、利 润的正确选择。正确的选择就是企业正确的态度,所谓态度决定一切,合理面对它,选择正确的处理方法,相信大数据给我们带来的是更上一层楼!a
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11