
2015年年大数据新趋势:大数据变小_数据分析师
大数据,这个用来形容资料爆炸量、多样化以及数据更新快速的专有名词,主要还是由物联网传感器、行动装置…等小型设备所运算结果集结成的。
有人预测2015年,将是大数据相当成功的一年。讽刺的是,这裡指的不是因为他们能精通Hadoop或Spark等复杂却高效率的分布式计算系统。反过来说,2015 年我们将使用更优于Hadoop 工具的方式,来处理过去使用大数据时伴随而来的问题。
其中最大的变化在于,能有效佈署与管理收纳网路服务的 Docker、企业计算容量等…开源技术的崛起,但相较于大数据能造成的潜在影响力还是相形见绌。知名弹性整合公司 SnapLogic 的 Darren Cunninhgam 更强调,几乎所有具指标性的大企业,趋势显示最终还是会回归数据基本面。
▲ SnapLogic 公司的 Darren Cunninhgam 在 Twitter 以 Big、small、fast、slow…等来形容大数据Big Data 千变万化特性。
但问题是,大多时刻我们探讨这些数据的机会,远多于投入实际使用。早在2013 年,Darren Cunninhgam 即指出每个人都知道他们需要做的事情与大数据息息相关,但实际上却很少人懂得如何运用。即便2014年都快已过完,这现象始终没改变。大多数企业仍然没有对这些数据资料花费太多心思,甚至对一些人来说这更是个复杂难题,除了专业科学家会好好使用外,这些付费就能取得的open-source 工具,对一般人来说要使用实在太困难了。
甚至多数人对大数据长久下来一直充满误解。举个例子,来自Bloomberg(专业财经媒体)负责人Matt Hunt 宣称:「在Bloomberg 我们并没有大数据问题,反而是有中量资讯(medium data)问题,这裡指的中量资讯指的是量够大、但适用于单一设备上,但并不需要庞大巨量的集群数据,相当于Terabytes 兆位元,而不需要达PB 等级。」
日前与相关IT 机构合作的NewVantage 透过调查表示,大数据能以PB 等级的惊人单位产生新闻,但大多数企业实际上也只需要管理到Terabytes 等级的数量。只有28% 的人认为,与其挑战大数据所带来庞大的资料数据,他们更关心的是资料种类多样性与更新速度。
在即将迈入2015 年此刻,许多企业仍因被迫使用 Hadoop 工具来面对他们的数据而饱受挣扎,特别当他们不断使用这些错误工具,套用在只能处理中量资讯资料的应用程序中。
提到2015 大数趋势,用「Big Data Gets Little」这句话就能看出端倪。于物联网之于行动装置的重要性,我们不能再单纯以近乎失去判断力、甚至盲从迷信的心态面对这些大数据工具。不过,Hadoop 是否还能像今年在物联网中扮演重要角色?「那当然!」Cloudera 公司创始人之一 Mike Olson 如是说:「新一代数据库技术,并不会去破坏现有大企业习于使用的 OLTP 及OLAP 等结构化数据处理与分析的市场,它虽然拥有前所未有的对于新数据分析与解锁能力,甚至能让我们以不同观点去瞭解这世界上各种事物,无论是创造新机会或新市场,对大数据来说基本上还是须依靠物联网,才能创造出更巨大机会。」
不过对 Hadoop 来说,虽为目前最理想用来处理大量数据的工具,却没有足够即时分析数据的能力。为能有效追踪物联网数据,NoSQL 数据库对 Hadoop 来说扮演重要辅助角色,使得能够即时回应实用数据成为可能。
有鑑于物联网产生数据(包括透过全新传感器、全新的数据类型…等)不断变化的特性,像 NoSQL这样的数据库是必须存在的,Machina 在一份研究中更假设:「从来自愈来愈多不同传感器、设备、或应用程序产生出愈来愈多的指数,一个事件会伴随出更多样化结构数据,这些附加数据範围从企业系统到众包数据,都必须经过整合才能传成有效资料。」
很多大数据工作迄今已将 Hadoop 与相关数据库系统或 RDBMS 做整合,但这却不是最理想的整合方式。根据权威 IT 行业分析机构 Gartner 指出,「因为物联网与各种行动装置应正迫使我们思考产生变化,并影响到我们之于这些数据的互动方式。」
在 2015 年,更多的大数据将同步从企业数据资料库转移至 Hadoop 端、或从严谨的 RDBMS 转移到更灵活的 NoSQL。毫无疑问地,物联网是成为这场变革的最大驱动力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19CDA 数据分析能力与 AI 的一体化发展关系:重塑数据驱动未来 在数字化浪潮奔涌的当下,数据已然成为企业乃至整个社会发展进 ...
2025-06-19CDA 干货分享:统计学的应用 在数据驱动业务发展的时代浪潮中,统计学作为数据分析的核心基石,发挥着无可替代的关键作用。 ...
2025-06-18CDA 精益业务数据分析:解锁企业增长新密码 在数字化浪潮席卷全球的当下,数据已然成为企业最具价值的资产之一。如何精准地 ...
2025-06-18