京公网安备 11010802034615号
经营许可证编号:京B2-20210330
2015年年大数据新趋势:大数据变小_数据分析师
大数据,这个用来形容资料爆炸量、多样化以及数据更新快速的专有名词,主要还是由物联网传感器、行动装置…等小型设备所运算结果集结成的。
有人预测2015年,将是大数据相当成功的一年。讽刺的是,这裡指的不是因为他们能精通Hadoop或Spark等复杂却高效率的分布式计算系统。反过来说,2015 年我们将使用更优于Hadoop 工具的方式,来处理过去使用大数据时伴随而来的问题。
其中最大的变化在于,能有效佈署与管理收纳网路服务的 Docker、企业计算容量等…开源技术的崛起,但相较于大数据能造成的潜在影响力还是相形见绌。知名弹性整合公司 SnapLogic 的 Darren Cunninhgam 更强调,几乎所有具指标性的大企业,趋势显示最终还是会回归数据基本面。
▲ SnapLogic 公司的 Darren Cunninhgam 在 Twitter 以 Big、small、fast、slow…等来形容大数据Big Data 千变万化特性。
但问题是,大多时刻我们探讨这些数据的机会,远多于投入实际使用。早在2013 年,Darren Cunninhgam 即指出每个人都知道他们需要做的事情与大数据息息相关,但实际上却很少人懂得如何运用。即便2014年都快已过完,这现象始终没改变。大多数企业仍然没有对这些数据资料花费太多心思,甚至对一些人来说这更是个复杂难题,除了专业科学家会好好使用外,这些付费就能取得的open-source 工具,对一般人来说要使用实在太困难了。
甚至多数人对大数据长久下来一直充满误解。举个例子,来自Bloomberg(专业财经媒体)负责人Matt Hunt 宣称:「在Bloomberg 我们并没有大数据问题,反而是有中量资讯(medium data)问题,这裡指的中量资讯指的是量够大、但适用于单一设备上,但并不需要庞大巨量的集群数据,相当于Terabytes 兆位元,而不需要达PB 等级。」
日前与相关IT 机构合作的NewVantage 透过调查表示,大数据能以PB 等级的惊人单位产生新闻,但大多数企业实际上也只需要管理到Terabytes 等级的数量。只有28% 的人认为,与其挑战大数据所带来庞大的资料数据,他们更关心的是资料种类多样性与更新速度。
在即将迈入2015 年此刻,许多企业仍因被迫使用 Hadoop 工具来面对他们的数据而饱受挣扎,特别当他们不断使用这些错误工具,套用在只能处理中量资讯资料的应用程序中。
提到2015 大数趋势,用「Big Data Gets Little」这句话就能看出端倪。于物联网之于行动装置的重要性,我们不能再单纯以近乎失去判断力、甚至盲从迷信的心态面对这些大数据工具。不过,Hadoop 是否还能像今年在物联网中扮演重要角色?「那当然!」Cloudera 公司创始人之一 Mike Olson 如是说:「新一代数据库技术,并不会去破坏现有大企业习于使用的 OLTP 及OLAP 等结构化数据处理与分析的市场,它虽然拥有前所未有的对于新数据分析与解锁能力,甚至能让我们以不同观点去瞭解这世界上各种事物,无论是创造新机会或新市场,对大数据来说基本上还是须依靠物联网,才能创造出更巨大机会。」
不过对 Hadoop 来说,虽为目前最理想用来处理大量数据的工具,却没有足够即时分析数据的能力。为能有效追踪物联网数据,NoSQL 数据库对 Hadoop 来说扮演重要辅助角色,使得能够即时回应实用数据成为可能。
有鑑于物联网产生数据(包括透过全新传感器、全新的数据类型…等)不断变化的特性,像 NoSQL这样的数据库是必须存在的,Machina 在一份研究中更假设:「从来自愈来愈多不同传感器、设备、或应用程序产生出愈来愈多的指数,一个事件会伴随出更多样化结构数据,这些附加数据範围从企业系统到众包数据,都必须经过整合才能传成有效资料。」
很多大数据工作迄今已将 Hadoop 与相关数据库系统或 RDBMS 做整合,但这却不是最理想的整合方式。根据权威 IT 行业分析机构 Gartner 指出,「因为物联网与各种行动装置应正迫使我们思考产生变化,并影响到我们之于这些数据的互动方式。」
在 2015 年,更多的大数据将同步从企业数据资料库转移至 Hadoop 端、或从严谨的 RDBMS 转移到更灵活的 NoSQL。毫无疑问地,物联网是成为这场变革的最大驱动力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26数字化浪潮席卷全球,数据已成为企业核心生产要素,“用数据说话、用数据决策”成为企业生存与发展的核心逻辑。在这一背景下,CD ...
2025-12-26箱线图(Box Plot)作为数据分布可视化的核心工具,凭借简洁的结构直观呈现数据的中位数、四分位数、异常值等关键信息,广泛应用 ...
2025-12-25在数据驱动决策的时代,基于历史数据进行精准预测已成为企业核心需求——无论是预测未来销售额、客户流失概率,还是产品需求趋势 ...
2025-12-25在数据驱动业务的实践中,CDA(Certified Data Analyst)数据分析师的核心工作,本质上是通过“指标”这一数据语言,解读业务现 ...
2025-12-25在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24在企业数字化转型的深水区,数据已成为核心生产要素,而“让数据可用、好用”则是挖掘数据价值的前提。对CDA(Certified Data An ...
2025-12-24数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转 ...
2025-12-23在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19