京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据如何建立企业竞争力与重塑竞争环境(1)_数据分析师
科技进步让各种先进的分析方法走入了寻常企业。“大数据”日益成为企业高管层津津乐道耳熟能详的字眼,但在把握大数据所蕴涵的商机方面,大多数企业的努力还 仅仅停留于“表面功夫”。 在他们眼中,大数据等同于“3V”:数量(volume)、多样性(variety)、速度(velocity),却常常忘了关注另一个最重要的“V”– 价值(value)。对全球企业开展了深入的研究,分析了大量成功与失败案例,从中总结出把握大数据机会的五个重要路径以及企业起步可采取的三个步骤。
如何定义大数据
我 们将以北美一家零售商的故事来阐述大数据的含义。该公司在北美的销售活动非常活跃,销售的产品总数达到3万多种,不仅如此,产品的价格也随地区和市场条件 而异。最让高管头疼的是定价促销策略。由于产品种类繁多,成本的变化异常频繁,一年之中,变化可达四次之多。结果就是,这家零售商每年的调价次数高达12 万次。处理定价促销的复杂之处,是它不只是受成本驱动,还有宏观经济、市场竞争、品牌定位、消费者心态等所影响。由于定价直接影响公司的利润率,高管决心接下挑战,组成了一个11人的团队,希望透过分析消费者的购买记录和相关信息,提高了定价的准确度和响应速度。定价团队的分析其实就是围绕着大数据的三个关键维度上:
•数量(Volume):团队需要分析海量信息。他们收集了上千万的消费者的购买记录,透过从客户不同维度分析,希望尽可能微分客户,了解客户对每种产品种类的最高接受能力,从而为产品定出最佳价位。
•多样性(Variety):团队除了分析了购买记录这种结构化的数据外,他们也非常聪明的利用社交媒体发帖这种新型的非结构化数据。由于消费者需要在零售商专页上点赞或留言以获得优惠券,团队利用情感分析公式来分析专页上消费者的情绪,从而判断他们对于公司的促销活动是否满意,并微调促销策略。
•速度(Velocity):为了实现价值最大化,团队对数据进行实时或近似实时的处理。他们成功地根据一个消费者既往的麦片购买记录,为身处超市麦片专柜的他/她即时发送优惠券,为客户带来便利性和惊喜。
透过这一系列的活动,团队提高了定价的准确度和响应速度,为零售商新增销售额和利润数千万美元。
这个故事跟BCG对大数据的定义也是相当吻合,重点都是放在最终的价值创造。我们对大数据的定义是:“在可控的经济成本下,企业可获取、分析并解读日益庞大且复杂的数据,让企业在价值创造方面实现跨越式的转变。"
我们也可以换一个角度来看看大数据的演变,那就是科技进步所推动的数据多样化和复杂化。在 很久以前,企业只会在他们的企业资源规划(ERP)系统中记录公司的采购和订单数据。 随着”以客户为中心“经营理念的日渐兴起,客户关系管理(CRM)系统应运而生,帮助企业收集客户的采购行为和偏好。此后,互联网时代的蓬勃发展为网络活 动和网络交易提供了足够的动力;互联网这一新的渠道,为企业带来了更多元化的客户数据。现在,随着移动装置、社交媒体、云服务以及“物联网”的大面积发 展,又涌现出了越来越多的原始数据和非结构化数据可供收集,包括定位数据、社交数据以及行为数据。可以说,大数据就是交易类、互动类以及观察类数据的总和。
大数据行业的发展趋势
目前,大数据行业可谓各类机构众多,既有基础设施、数据库以及分析技术等下游机构,也有应用类、商业情报等上游机构。
估计2012年大数据行业总值预计达100亿美元,年均增速约为40%。到2015年,这一市场的规模将扩大至270亿美元。硬件在大数据市场仍然占据最大的份额(35%),而软件企业和实施机构(如:系统集成商)也在快速成长中。
未 来,大数据行业将经历快速整合。大家是否还记得网络时代(dot-com)各类互联网咨询公司层出不穷的盛况?其中九成企业在短短数年内就夭折殆尽。相同 的剧情也有可能在所有大数据咨询机构身上重演。对企业而言,起步较早的机构可以获取客户洞察,取得先发优势。然而,就像是一场军备竞赛 – 用不了多久,大数据能力会成为所有企业的必备能力。这时候,整个行业又将站回到同一条起跑线上。
商机在哪里?
大数据领域的价值创造机会因行业而异。在零售业,先进的分析方法往往与战略相得益彰,涵盖促销增效、定价、门店选址、市场营销等多个领域。而在能源行业,大 数据的价值创造重点更体现在智能电表数据的使用以及对实体资产(如设备和工厂)的优化上。在金融服务业,大数据的应用则往往体现在风险评分、动态定价以及 为ATM和分行网点寻找最佳地点等方面。而在保险业,大数据的价值可能体现在防范理赔欺诈、优化保险金给付以及跟踪驾驶行为等方面。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16