京公网安备 11010802034615号
经营许可证编号:京B2-20210330
| 2014年时曾提到,业内大数据分析面临几个重大的转折点。我们需要新技术和新工具,帮助更多用户更合理地利用数据,而且迫切需要更广泛的数据分析功能,从不同来源的所有数据中发现它们之间的关系,并获得洞察力。为此,Teradata的创新型技术Connection Analytics技术将工具为大数据分析行业开辟了新的格局。今年一月,我在展望2014年时曾提到,业内大数据分析面临几个重大的转折点。随着数字 化时代数据规模和复杂度呈指数级增长,我们需要新技术和新工具,帮助更多用户更合理地利用数据。我还提到,我们迫切需要更广泛的数据分析功能,从不同来源 的所有数据中发现它们之间的关系,并获得洞察力。仅关注客户或网络等特定分析实体的内容已不足以满足企业需求,我们还需要了解这些实体之 间的关系情境,通过跟踪用户、产品及过程之间对结果产生影响的关系变化,获得洞察力并创造价值。但这不仅仅是数据科学家的专利,我们还需要通过各种途径帮 助普通商业用户轻松、直观地获得并运用这些洞察力。目前,Teradata天睿公司已推出全新分析功能,以满足这些要求,对此我倍感骄傲。我们在上周举办的2014年Teradata合作伙伴大会上发布Connection Analytics,这是一套高级情境分析功能,能够以较低成本大规模应用于大型多结构数据集。Connection Analytics基于Teradata Aster强大的MapReduce及Graph引擎,可运用100多种预置算法帮助数据科学家乃至普通商业用户理清复杂的关系,并从中梳理出获得全新业 务洞察力并创造价值的成功模式。Connection Analytics将作为Teradata统一数据架构下Teradata Aster探索平台的重要组件供用户即时使用。据我们发布的Connection Analytics新闻稿,Connection Analytics能够在用户可访问的环境下实现上述功能,并与现有基于SQL的可视化能力及商业智能应用无缝整合,在业内率先将高级情境分析能力与易用 性完美结合。这将为更多商业用户提供多种洞察力,帮助他们梳理各种关系,用于预测业务欺诈行为或客户流失,开展精密策划的病毒式营销活动,提升公共网络健 康度与安全性及优化推荐引擎。到目前为止,情境分析仍存在高难度、高成本等挑战,因为它需要专用系统及难以企及的独特 技能组合,并结合多种算法,才能发现这些错综复杂的关系。现有基于内容的决策模型侧重用户、产品或过程的个体特性分析,而Connection Analytics拥有基于情境的决策模型,可分析这些实体之间的相互关系。部署Connection Analytics后,数据科学家乃至商业用户将能够运用熟悉及易用的工具增强现有决策模型,实现大数据分析最前沿技术的普及应用。但所有这些讨论都仿佛是在纸上谈兵。现在,我将介绍一些即将发布的价值驱动型用例。例如 (怎样减少)客户流失:通过部署Connection Analytics,用户能够将传统统计方法、机器学习及情感分析与影响因素分析相结合,调查客户满意度,并在客户群中准确找出最具影响力的群体。这将帮 助企业减少客户流失,并在客户流失时尽量避免连锁反应。Connection Analytics还能够找出对购买产品构成最直接及间接影响的因素,为病毒式营销活动有针对性地提供信息。Connection Analytics还帮助企业监测IP、网络、服务器和通信日志不断生成的各种数据流,实现网络威胁的近实时监测。Connection Analytics可跟踪用户、产品、过程及其它“实体”之间关系,这对于破解组织严密的诈骗团伙至关重要。当诈骗人员创建新的身份,或改变其诈骗手段 时,如仅使用基于内容的决策模型,用户将轻易上当。但通过使用Connection Analytics,将帮助用户运用基于情境的决策模型,增强传统上较为肤浅的分析视图,获得暴露可疑活动并识别诈骗集团的算法模式。在当前数字化时代中,万物皆有联系。因此,企业和公共部门机构需通过关系建模分析,了解 不同数据集之间的关系。Teradata天睿公司推出Connection Analytics,为情境式决策专门开发出可供用户访问的高性能分析平台,率先为广泛的用户群体提供企业级分析能力,为大数据分析行业开辟了新的格局。 在大数据分析技术处于重要转折点时,Teradata天睿公司将通过技术创新,推动行业不断发展,并帮助客户取得成功。 |
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16