
“我跑企业20多年,经常是制造企业老板驾驶汽车开到厂房里,告诉我,这是亚洲的最大厂房。这种情况,今后可能越来越少。从今往后看,中国新的制造企业模型,一定是专业公司+信息化改造+小制造。”在一场财富论坛上,著名财经作家吴晓波一席话,震撼了在场的很多企业主。
与之相呼应的是世界著名财经报刊《经济学人》,近日撰文称“数字化生产推动第三次工业革命”。文章指出,不远的将来,借助新材料和信息技术的应用,大多数产品都可经过计算机设计,然后通过3D打印机“打印出来”。一个不限地点、无需工人、真正实现个性定制化的时代即将降临。在这股全球性“信息化大数据”浪潮中,中国定制衣柜行业首当其冲,而“整体衣柜十大品牌”诺维家率先积极应对,2014年10月基于云平台的CRM系统正式启用,预示中国定制衣柜行业第三次革命的大数据管理时代拉开序幕,宣告定制衣柜高价格时代的终结、大众化普及时代的来临!
个性化定制与规模化生产的冲突
现今普通消费者购买的商品房都不大,对于合理优化和利用住宅空间有迫切的需求,只有定制才能满足。所以,这是一个对全屋定制家具有强烈需求的市场,但由于定制家具过于高端,普通消费者难以承受。
即使到现在,定制仍与高端、与小规模生产挂钩,尤其是家具这类大宗货物。原因在于,在生产环节,传统定制家具生产效率低、材料浪费高,难以量产;在接单环节,定制需要设计师针对消费者个性需求进行设计,人力、时间成本高。上述两个环节因素的制约,导致定制家具价格居高不下,难以实现规模生产。
对于坚持“任何空间任意定制”的诺维家而言,要发展就必须解决个性定制与规模生产的冲突。其解决办法是导入大数据管理系统,一个是生产系统,另一个是销售设计、分析系统。
诺维家是先设计销售、再生产的商业模式。为解决传统设计人力、时间成本高的问题,诺维家自建云诺4D全屋装修设计软件,一方面对全国各大城市数以万计的户型数据进行收集,梳理出几十个最基本的户型。另一方面通过在与消费者沟通时,收集信息,例如房屋朝向、户型、业主身高、颜色喜好与最终选定的方案等,录入信息库。
如此一来,当新的消费者进店后,设计师就可很快在已有户型中挑选最贴近的房型,进行微调后开始方案设计。
而在方案确定后,每一件家具的每一个部件都会拆分、转化为一个又一个的数字,被传送到诺维家的云数据库订单中心。用大数据的方式,指挥每一台机器生产。
在此情况下,诺维家生产效率是传统家具制造企业的7到8倍,材料利用率提升5%,出错率大幅降低。通过部件拆分“排板”后,板料基本都被各个部件填满,即使是边角料也能被有效利用,而传统家具制造企业的材料利用率仅85%左右。
相比之下,传统家具制造过程中,员工在生产操作时要向机器输入指令,对员工的技术和经验要求高不说,速度慢且出错率相对较高,行业流行一句话“出错率提高一个点,就要损失将近10%的产能去补错。”在“机器指挥人”后,这些问题得到很好的解决。
大数据管理系统大大降低非标件成本
在诺维家生产车间,每个部件都有一个“身份证号码”和一个“二维码标签”。每一个身份证号码由21位数字组成,包含了板件的开料尺寸、封边方式、开槽方式、打孔方式、邮寄地址等信息。这个“身份证号码”保证每个配件都不会重复,它是在不同的时间、不同的批次、不同的订单、不同的柜体、不同的生产批次里面都是唯一的号码,永远存在云数据库里面。
通过导入大数据管理系统,成千上万的订单,就有成千上万带有身份证号码的板件,通过擅长处理海量数据的电脑能把它们合并,相同颜色、相同厚度、某个方向相同的尺寸……把它们全部放在一起,用优化软件排序,然后开料。分类之后,就像流水线一样,生产效率大大提高,成本自然就降下来。
原来依靠工人按照图纸来计算孔位,调机器,然后打板。而现在只要用扫描枪对着每块板材的“身份证”扫描,所有板材的孔位尺寸、数据,全部信息一览无遗,之后机器设备自动定位,定位好以后,孔位一次性加工完毕。这种傻瓜式操作方式,不但用工门槛低,解决用工荒问题,且效率得以数万倍的提高。
利用大数据管理,标准件和非标件实现同价,这是诺维家赢得市场的杀手锏,而“机器指挥人”背后的大数据管理系统,是诺维家能将个性化定制做成规模化的秘诀之一。
个性化定制与规模化生产,过去本是矛盾的两种模式,现今在大数据管理的统领下,互为补充、共同增长,满足市场对定制家具的海量需求,并在推动诺维家朝百亿目标奔进的同时,亦可隐约窥见背后强大的推动力:大数据管理。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为银行精准 ...
2025-07-02探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25