京公网安备 11010802034615号
经营许可证编号:京B2-20210330
企业何时才能从大数据中赚到人民币_数据分析师
大数据中蕴含着大价值,相信每一位关注IT技术创新的人都会听过这句话。没错,从海量数据中筛选出有用的信息,然后通过各种手段将信息转化为洞察力,从而做出正确决策,推动业务发展。在这样一个信息链条中,企业需要确保每一个环节都不出错,才能将数据转化为价值。然而又有多少企业真正能做到这一点呢?少之又少!大数据很火,但是何时才能让大数据真正为企业带来盈利?对此,数据分析和市场营销专家Brooks Bell在Techonomy上发表了她的观点。
麦肯锡机构称,大数据将成为“下一代企业竞争力,生产力以及创新的前沿”。但现状是,许多企业和管理者开始盲目收集数据并进行分析,期待能够得到快速的回报。很遗憾,他们未能如愿。大多数企业距离从数据中提取利润都差着十万八千里,这可不仅仅是缺少合适的技术。想让大数据真正对企业盈利造成影响,就需要解决三大根深蒂固的挑战。
第一,“拍脑袋”做决策的方式还很普遍。在商业世界里,“最高权利者”的意见对决策会造成极大影响,这种现象非常普遍。这是许多企业的通病,大数据可以对此进行纠正。然而真正做到需要企业观念的转变,领导在做出决策时要摆脱“拍脑袋”的坏习惯,让真实的数据说话。只是收集更多数据,对于推翻这种心态一样于事无补,甚至会让观念的转变过程变得更加艰难。
在最近火到一塌糊涂的畅销书《信号与噪声(The Signal and the Noise)》中,作者Nate Silver提到“如果天气预报员与民众互相不信任的话,那么即便在真正需要的时候民众也不会去听天气预报了”。这就像是CEO与数据之间存在的“狼来了”的问题。如果分析是错误的,或者更糟糕的情况——数据从一开始就没有收集正确,那么决策者肯定会对信息和提供信息的员工失去信任,从而再次回到“拍脑袋”的时代。
第二个挑战就是人才技能的不足。就目前来说,能玩转大数据的人才远远无法满足企业的需求量。硅谷之父万尼瓦尔·布什(Vannevar Bush)在70年前就说过这样一句经典的话:“未来将会有信息的开荒者,这些人会在大量普通记录中寻找线索,并自食其乐。”然而,根据麦肯锡机构的报告,目前在美国只有19万接受过严格训练的数据分析师,这一数量远远无法满足大数据时代的需求。
根据SAS研究院和IDG机构的一项调查报告显示,57%的参与者认为他们自己在数据分析方面缺少合格的技能和经验。而对分析任务缺少信心只是挑战的一部分,从事数据相关工作的员工还需要在以足够的精度来收集合适的度量方法方面下更多功夫。
企业管理者不必非要招聘一群数据科学家级别的精英来直接向其汇报,他们需要在各个层面鼓励机构培养分析师,传授核心技能、最佳实践,在此过程中要尽量做到精确。这样能够增加透明度,鼓励对数据的需求并帮助传播必不可少的技能。
知道如何处理数据则是第三个挑战。即便在解决上述两个问题之后,也要弄清什么样的业务能够通过大数据获得收益。如果不能指导行动,那么收集再多的数据也是毫无意义的。事实上,获得洞察力是一方面,可实践性也是分析的标志之一。那么企业能否从大量历史数据的“噪音”中获得可实践的预测以及具有前瞻性的决策?
举例来说,一家手机制造商也许能够收集大量的消费者数据,除非这些数据能够应用到实践当中,从而改善客户体验,否则它只具有理论上的价值。再比如,一家连锁零售企业通过精准的邮件营销获得客户的信息,但如果销售部门没有合理利用这些信息,那么销售机会就会稍纵即逝。大数据想要获得大成功,数据的文化就必须传播给企业的每一位员工。
不仅仅是在大数据时代,对数据的“不适感”是导致这一问题的主要原因,大数据只不过把这一问题放大了。小说家博尔赫斯在《巴别图书馆》中就曾描述过这一问题。宇宙充斥着无数图书馆的书架,其中摆放着看上去一样的书,每一本书由不同随机组合的字母和标点组成。在这个图书馆当中,所有的想法和事件都会被记录下来,但任何洞察都隐藏在数不清的废话里。博尔赫斯笔下的图书馆管理员没办法利用这一庞大的资源,只能蒙混过关。这与企业对大数据的应用情况又有什么分别呢?
Nate Silver也提到了这一点,他认为从噪声中辨别有用的信号既需要科学知识,也需要自我认识:平静地接受我们无法预测的事,也要勇于预测我们能够预测的事,智慧就在于如何辨别二者。换句话说,数据无法用来揭露真相,它只能提出假设,然后我们再通过反复的测试与实践来证明。
大数据给人以希望。但是我们要做的,是理解数据的重要性,然后在规划的每一个阶段以及企业的每一个层级中充分利用数据。掌握小数据部署利用好大数据的充分条件,而是必要条件。企业关注的重点应该是,让更多的员工,更有规律地,更好地利用那些可管理的数据。然后让业务逐渐能够基于数据来采取行动,只有这样才能让大数据之梦成为现实。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15