京公网安备 11010802034615号
经营许可证编号:京B2-20210330
开展大数据管理 打造“数据化企业”_数据分析师
大数据带来新一轮信息革命的同时,掀起了一场管理革命,在经营管理层面上给企业带来诸多变化。
目前,国内大数据已基本具备发展土壤:企业数据从数量和多样性上有质的提升,数据价值得到较高认同。本文尝试以大型国企(央企)为研究对象,探索大数据对企业管理变革的影响及企业的应对之策,希望对企业大数据管理和利用有所裨益。
大数据引发企业管理变革
从理论角度来讲,之所以说大数据掀起企业管理变革,背后有两个密切关联的因素。
一是大数据的本质与管理的核心因素高度契合。一般认为,管理最核心的因素之一是信息搜集与传递,而大数据的内涵和实质在于大数据内部信息的关联、挖掘,由此发现新知识、创造新价值。两者在这一特征上具有高度契合性,甚至可以说大数据就是企业管理的又一种工具。因为对于任何企业,信息即财富,从企业战略着眼,利用大数据,充分发挥其辅助决策的潜力,可以更好地服务企业发展战略。
二是大数据由资源到资产的转变。大数据时代,数据在各行业渗透,渐渐成为企业战略资产。拥有数据的规模、质量直接决定了企业的核心竞争力以及市场洞察力,也影响着企业的战略调整,数据意味着巨大的投资回报。
央企大数据管理机遇与挑战并存
大数据发展对不同行业、发展阶段及规模的国有企业有着不同影响。特别是大型央企,在利用大数据方面起点相对较高,受益更大。对于央企来说,大数据对其经营管理意味着什么?
第一,机遇方面。一是体现在信息化建设投入上。大型央企有实力对企业的信息技术进行投资,应用较先进的技术,保障企业数据有效管理和利用。此外,国有企业管理延续性较强,总体较稳定。二是体现在顶层设计上。大型央企在大数据管理的顶层设计上具有优势,可以对企业数据化管理进行系统规划。三是体现在政策优势及人才队伍上。
第二,面临的挑战。一是信息体系建设十分迫切。一般大型国有企业数据量庞大,从信息挖掘层面讲,这需要合理的技术搭配。此外,从组织结构来说,大数据对信息技术部门与业务部门之间的密切配合提出了更高要求。二是注意信息安全防范。三是人才储备不足,对相关数据挖掘分析人才的吸引力和培养水平有待提高。
央企开展大数据管理的探索与展望
如何开展大数据管理?对于国内央企来说,要有一条符合自身发展特点的大数据管理路径,在信息化建设中,打造“数据化企业”。
第一,做好大数据资产的筛选和评估。对国内央企来说,这分为事前和事后两个阶段。事前是从思想上重视大数据对企业的影响,将数据作为企业的核心资源来看待。事后是要在企业内部对大数据进行从资源到资产的筛选,对什么样的大数据可以成为资产进行评估。
第二,集约开展顶层设计、系统规划。大型央企下属单位众多,企业管理结构不同,情况相对复杂。要发挥系统优势,必须对数据化进行统一科学设计,避免重复建设、各行其是、互不兼容,充分发挥信息技术对数据分析的作用。
第三,强化数据管理,重视数据安全。在数据管理上,央企可以结合现有企业信息化建设,将企业数据管理推向纵深。数据管理事关企业核心竞争力和战略目标,必须有战略高度。数据收集和管理要“广撒网”,发挥各部门的协同效应。不仅要关注综合性数据和关键数据,而且要关注基础数据,要深度利用、挖掘数据。同时,要特别重视数据安全,从技术和制度层面保障数据安全。
第四,优化内部运营模式,加强外部合作。央企应确立面向客户的价值服务导向,针对需求,重新制定、优化企业的制度、流程,增加数据收集、管理和分析环节,设计适应市场竞争的商业模式和内部运营模式。要加强与外部的合作。与外部企业、科研院所、行业协会等机构进行交流合作,实现数据技术、资源和平台互补。同时,加强上下游产业链相关企业的数据管理合作,在数据收集、分析、共享方面开展互助。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15