
教你如何用大数据做年终总结_数据分析师
一份好的年终总结可以回忆过往,继往开来,痛改前非;可以减轻没有完成前年设立之目标的内疚感;更可以成为给予自己新的一年可以重新做人的假象。可谓是居家旅行、自我麻痹必备之良品。
在“互联网思维”“大数据”满天飞的今天,如果你还用文字写年终总结,请问,你怎么装逼呢?!怎么获得朋友圈如潮水一般的赞呢?!
如果你想时尚时尚最时尚,体验cutting edge技术的低调与华丽,请务必get此技能。经过本人潜心研究,get此技能无门槛,只要你有一颗想装逼的心,只要四步!不是一两千!不要998!真的只要四步!八星八箭装逼技能抱回家!
第一步:选取分析样本
首先你需要选择在过去一年中,对你持续进行的某一行为,进行量化处理。比如,读过多少本书,背诵了多少首诗,看过多少场电影,跑过多少公里,积累了多少单词等等。数据统计得越细致,分析效果逼格越高,也就是能具体到星期,就不要月。
什么?你说你什么都没干?那么也请不要轻易放弃装逼的机会好吗?你总发了朋友圈,刷了微博吧?那就把你每周发了多少条朋友圈进行统计吧。
第二步:进行数据分析与呈现
“工欲善其事,必先利其器。” 数据分析工具直接决定了最后逼格的高低。
入门阶段可以使用Excel,如果你有Mac,那请使用Numbers,你问我有什么区别?风中飘来两个字,逼格!虽然Excel功能十分强大,但是我们care么?Of course not!(耸!肩!)
当然,如果你想将自己定义为技术牛的话,请使用SPSS,Stata,SAS。虽然是用牛刀杀鸡,但是我们要的是什么?Follow me! Bigger(逼!格!)!
什么?你会Clementine和R语言?恭喜您已自带逼格,出门左转,慢走不送。
在分析方法上,请将你掌握的统计学知识充分利用:集中趋势、离散趋势都往上招呼,回归分析、泊松分布也不要客气。
这些都是什么?不会肿么办?是不是装逼与我无缘?没关系!请使用柱状图,彩色的!用冲击力夺人眼球!
喏,就是这样咯。
第三步:图表分析
数据分析好了要得出结论才算总结吧?
首先选择一种语言。小语种优先,法语、德语、日语、韩语、意大利语都可以,无论内容是什么,先从气势上压倒对方。若是都不会,没关系,那就选择英语吧,受众面广一些,别忘了在最后添加一个C’est la vie,轻松渲染悲壮而乐观的气氛。
如果英语编着也吃力,那请记住Less is more的原则,用“。”塑造一个低调的逼格王。
什么?你掌握英法德日韩土耳其希伯来7门外语并且有选择恐惧症?不好意思,我也想体验你的痛苦。
好了,准备就绪。最后就请优雅的打开朋友圈,点击发送。等待赞的到来。如下图所示:
温馨小贴士:
如果你害怕今年的逼格太高,明年难以超越自身,以继续维持闪耀的公众形象。那么请从数据收集做起,今年坚持每天做一件小事并记录下来。走运动路线的请使用可穿戴设备,最差也下载个跑步app好吗?明年这个时候,你就可以有大把的数据,进行更为深(zhuang)入(bi)的分析了。
每天一小步,一年一大步。哪怕每天多吃一口饭,明天这个时候站在门边,也是literally“一头风口上的猪”了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15