京公网安备 11010802034615号
经营许可证编号:京B2-20210330
城市大数据分析的价值展望(1)_数据分析师
当前,我国互联网普及水平大幅提升,截至2013年6月底,网民数量达到5.91亿[1], 而物联网空间又时刻产生着大量的异构数据,例如,传感器及射频数据、移动设备数据等。地理、交通、经济与文化在赛伯空间中的映射意味着海量数据流转。而在城市管理层面上,大连接、大交互必然产生大数据。在信息化城市之上,通过数据存储、运算和分析,将数据深度挖掘、充分利用,能促进城市的发展以及与其他城市的联盟性合作。
在全球信息化的背景下,大数据已经上升为多个国家与地区的战略性计划。如在2012年3月,美国政府整合6个部门投资2亿美元启动“大数据研究和发展计划”。在该计划中,美国国家科学基金会提出,“要形成一个包括数学、统计基础和计算机算法的独特学科”。
眼下各国政府纷纷抢占大数据的高地,是因为数据和能源、材料一样,已正式成为一种重要战略性资源。政府拥有60%以上的社会信息资源,但由于数据资源整合不足、数据市场机制空缺等原因,制约着数据利用的社会化。如何利用大数据技术和理念,提高管理与决策的能力和质量,成为信息化条件下提高政府服务效能的重要内容。
中国科学院编制的“中国至2050年信息科技发展路线图”报告第六章“发展数据知识产业”明确指出:“数据知识产业将是我国国民经济增长中的重要力量,是推动产业结构升级的新兴经济业态。”我国自2012年以来兴起的智慧城市战略也非常重视数据的整合、管理、分析及利用工作,并在住建部发布的多个文件中均指出“要高度重视信息整合和共享协同,抓好城市公共信息平台和公共基础数据库建设,提升各应用系统效能”。可见,对公共数据的管理与利用是智慧城市建设的核心目标之一。
当前大数据的研究针对商业智能方面较多,在城市管理层面上,虽许多城市在进行数据中心建设,但系统化的支持理论较少。本文在分析我国信息化现状、智慧城市建设进程的基础上,充分考虑大数据的应用潜能与当前技术与政策上的缺憾,明确了城市级大数据分析的意义,并总结出所需保障及应用体系,如图1所示。

图1 城市大数据分析保障及应用体系
2 城市大数据分析的效能意义
2.1 城市运行过程监督
城市运行过程监督围绕城市行政公共服务开展,重点针对地区重大工程、重大事件和重大活动落地实施过程中的需求分析和效果监测工作,覆盖政府网站群、搜索引擎、微博、博客、论坛等互联网信息传播主渠道的互联网用户舆论焦点数据和话题信息,评估各城市项目实施的市民需求情况和市民反馈情况,为交通、旅游、医疗、农业等部门提供政务互联网大数据分析与决策支持。
2.2 改善组织结构绩效
改善组织结构包括构建高效型政府、促进经济结构调整、实现产业结构优化等。通过大量的数据点及数据流通性分析,发现组织结构的瓶颈,从而改进业务流程与执行效率。
2.3 促进产业发展
促进产业发展包括在交通管理、金融服务、医疗卫生、生产制造、商业零售、个人数字生活等方面实现数据、信息的价值。例如,通过大数据分析帮助游客了解地方文化特色、进行个性化路线规划、推荐景点及产品等应用,可满足游客日益增长的信息量需求,促进旅游产业的发展。
2.4 支持运行监测与预警
通过大数据分析预测、预警群体事件和焦点演变,顺应城市事件管理从“事后查看”到“事前预警”的需求变化。大数据早已在监测与预报,尤其是发现异常数据方面显示出巨大能量。如2009年甲型H1N1流感暴发时,“谷歌流感趋势”系统即为大数据分析预测的经典应用。它通过分析大量用户的搜索记录,比如“咳嗽”、“发烧”等特定词条,预测美国冬季流感传播趋势。谷歌甚至能比官方机构提前一两周预测流感暴发,预测结果与官方公布数据的相关性高达97%。
2.5 提高地方知名度
若要提高地方知名度应深度挖掘城市民族文化与地域特点,将城市视为国内外文化与贸易交流的节点。目前国内许多城市急需拓展信息视角,开辟外界对自己的认知窗口,进一步拓展地方知名度。如此,一方面给城市硬实力的提升注入了鲜活的力量,另一方面也让更多人了解城市、树立地方品牌,助力城市软实力的提升。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01