京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据需要建立规则和标准_数据分析师
作为在上世纪90年代就提出可穿戴设备概念的潘特兰教授,在大数据方面也享有卓著声誉,但他对大数据的看法,站在互联网业者的角度来看略显保守。因为他最为人称道的几个研究方向并非大数据的应用,而是个人数据采集规则,大数据安全和隐私等。不过这些在我们眼里看上去远比不上大数据发展优先的主题,并不妨碍他成为大数据领域首屈一指的专家。
潘特兰的学生中牛人辈出,有发明谷歌眼镜的,也有发明面部识别技术的。潘特兰本人则较为热衷于为大数据采集和应用制定规则,设立标准,甚至还在世界经济论坛这种重大场合为政治及经济人物提供各种与此有关的建议,可以看得出,大数据的规则和秩序是他更为看重的主题。这在当前整个社会对大数据的狂热情绪下,似乎显得有些违和,但谁也不敢肯定,几年后这未必就不是一个至高议题。
与那些喜欢做美食但自己不吃的厨师一样,潘特兰作为可穿戴设备教父,自己是不戴可穿戴设备的。虽然没有明说,但他对产自IT界的各种可穿戴设备所表现出的鄙夷,还是能够令人清晰感知到的。吃饭的时候他曾表达过这样的意思:不要相信那些现有的可穿戴设备,未来的大数据与之没有半点关系。而在现场视频中对各种市面上常见的可穿戴设备进行测试时,结果也确实与其态度有所吻合,所有加入测试的设备无一幸免地暴露出数据上的偏差,外观不错的小米手环误差率竟然达到了15%。
潘特兰将这些设备称之为简单、劣质,而他自己认可的可穿戴设备标准,则完全以用户体验为导向。他认为,那些设备光是能将人的步速和心跳频率测出来,本质上是没什么用的,用户需要让这些设备告诉自己,今天他的身体到底好不好,有没有什么欠缺,该如何进行调理等等。他所说的这种我们从未见过的场景,我想就是可穿戴设备和大数据紧密结合的产物了,很遗憾这种产品目前还没问世。
大数据的四个阶段,采集、存储、分析、应用,目前的发展水平似乎仍停留在采集阶段,但对此已有分歧了。大公司喜欢把合理诉求和自我诉求巧妙混合在一起,然后拿出来说事儿,他们对数据的渴望是贪婪的,恨不得能采集的都采集到,然后实现数据互通,最终实现产品化和商业化。
但要注意到的问题是,数据采集和使用仍然是应该有边界的。就拿BAT来说,腾讯把聊天记录作为大数据样本,阿里把交易信息作为大数据样本,百度把越权抓取的非公开信息作为大数据样本,从法理上来说都是存在一定风险的。个人网上信息的所有权在过去并不是个问题,未来一定会是个问题。
潘特兰为此提出的解决方案,则更显人性化,基于用户角度去考虑问题,较少考虑商业因素。他认为,每个人都有权使用自己的数据,选择进入或者退出网络,或者选择是否分享给别人。只有用户对数据应用和安全放心了,不觉得会有什么问题了,才会有真正的大数据。
其实很容易理解这些话的含义,大公司对数据的撷取是主动的,而用户对数据的被收集则是被动的,这对于一个未来的庞大产业而言,不可能不是一个问题。英国微电影“黑镜“中有个场景,在一个人出车祸死后,系统自动搜集此人在各种社交网络上的发言和分享,类似于人肉搜索,然后基于这些数据模仿出其语言,再通过逼真的模拟语音,实现与未亡人进行跨阴阳两界对话的效果。这个场景相当令人震撼,也相当令人担忧。
如果大数据应用到这个地步,必然会出现不良后果,这会反过头来损害大数据产业的发展。潘特兰说的那些话意思在于,你让用户自己去选择个人数据的应用,赋予其主动权,这才是对大数据发展更有好处的事情。
例如,用户如果认为自己的身体数据并没什么隐私问题,你给他退出的权利,他会主动给你上传更多的优质数据,而这些数据是公司们想通过技术手段收集,也收集不来的。可穿戴设备与这种兼顾了用户权利的数据结合,才会达到他心目中的理想效果。
其实我一直都有个看法,通过大数据预测未来是一件不靠谱的事情,不管你的应用技术如何发达,IT设备如何高效,这本质上是一种违背能量守恒定律的臆想,如永动机一样永远不能实现。不过,在预测未来之外,大数据可做的事情其实要比我们想象的更多,如石油带动能源革命一样,会对未来的人类生活产生重大影响。
这个事情需要有序推进还是野蛮生长,着实是值得深思的问题。由于数据维度的不同,文化习惯的差异,大数据之间未来发展到应用阶段时,会呈现出严重的不同步现象,出现失真,解决这个问题的关键,在于规则和标准。而为大数据建立规则和标准,似乎正是潘特兰教授真正心向往之的一件事,因为他知道,这可能会影响到一个革命性产业在未来的走向。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15