
教育大数据,想说爱你不容易_数据分析师
近两年,“大数据”在教育领域日益成为热点名词,和“在线教育”相呼应。从今年新东方、学大等教育机构发布的教育产品来看,几乎每一款产品都会提到大数据。既然如此受到重视,那么在当下教育领域,“大数据”有何特点?又有何作为?
专家指出,目前国内教育领域的“大数据”仍处于概念阶段,大家都在起步和探索过程中,尚无比较成功的大数据应用案例,不少大数据应用也都处于较浅的层次。不过,随着教育大数据的不断积累和深入发展,“大数据”必将有利于我们的个性化教育,对教学和管理产生深刻影响。
随着“大数据”概念不断升温,教育行业如今也被认为是大数据可以大有作为的一个重要应用领域。几乎每家不甘落后的教育机构都在拥抱大数据,把大数据当作在激烈竞争中脱颖而出的秘密武器。
“其实,十几年前我们就在做数据仓库和数据挖掘。如今大数据这个概念兴起,主要基于两点,一是数据海量增长,处理样本数变多;二是物理运算能力增强,给处理海量数据带来可能。”在计算机博士、朗播网CEO杜昶旭看来,大数据既没有那么神秘,但也不像有些人想象得那么简单。
干扰性数据多 影响统计分析精度
杜昶旭认为,与其他行业的大数据相比,教育行业大数据目前数据量比较小,教育数据噪声也比较高。他解释,目前在线教育不像电商,用户数量庞大,数据可以累积到海量。而且教育垂直属性特别明显,大量数据会分流向不同垂直领域。
而不同垂直领域之间的数据融合度比较低,比如语文和数学的数据很难放到一起来分析;数据噪声简单讲指干扰性数据、无用数据,比如录播视频,用户行为很简单,有暂停、关闭、重看等等,但是这些操作的原因很多,并不一定是没看懂内容,所以干扰性数据非常多,数据统计分析的精度会受影响。
“此外,教育数据标准化程度非常低。数据大致可分为结构化数据和非结构化数据。以描述人一个人打比方,结构化数据就是人的身高、体重、性别;非结构化数据则可以是人的声音、照片等。”杜昶旭说,很多教育数据比如视频数据、语音数据等都是非结构化数据,数据模型构建会比较复杂,“所以,教育大数据需要解决数据量和数据处理的问题。”
优质技术分析 要有一流试题保障
互联网教育研究院院长吕森林也指出,教育大数据分析并不是有数据就可以,如果数据中有很多垃圾数据,那么分析得出的结论也可能是垃圾结论。
“比如题库类产品,一道题可能需要20多个指标来分辨学生各方面的情况,如区域、学科、难度、知识点等等,如果试题质量比较低,区分度比较低,那做大数据分析的意义就不会太大。此外,现在的大数据分析多集中在选择、判断等客观题,对带有步骤的主观题、作文等进行统计分析则有更高难度。”因此,题库的大数据分析看起来比较简单,但实际上技术、资金门槛都比较高。
业内点评
“习”比“学”更易采集和分析
那么,教育大数据可以发挥怎样的作用呢?大数据研究专家、上海海事大学经济管理学院副教授魏忠认为,大数据技术的应用将有利于个性化教育,标准化的学习内容由学生自己组织学习,学校和教师更多的是关注学生的个性化培养,教师由教学者逐渐转变为助学者。
“重要的是数据背后的那个人。”微课网副总裁夏明瑞以历史学科视频课程为例,如果用户观看几分钟就关掉了,以后再没看过,那就要关注用户的这种行为数据。他关掉的原因大致可能有两种:一种是学得非常好,另一种是学得不好,看不懂。单节课的数据可能不够精准,但对整个课程体系的数据进行统计分析之后就会相对精准了。
杜昶旭则认为,目前“学”的过程采集数据的难度较大,“习”的过程采集和分析数据会相对容易一些。“今年我们推出了能力图谱,通过对学生行为数据进行诊断,看看学生的问题到底在哪里,然后基于能力缺陷推送需要完成的训练任务,提高学生学习效率。”杜昶旭说,这种大数据分析既能帮助学生个性化学习,也能帮助老师进行个性化教学。
专家说法
大数据适应个性化学习
魏忠,数据研究专家、上海海事大学经济管理学院副教授魏忠
人们对大数据的理解有很多,目前我倾向于把大数据理解为全量数据。
科学研究最简单的是抽样方式,然后进行推导,后来人们发现这有很大问题,于是就有了统计学,用概率来解决问题。但是抽样的量一旦到了一定程度之后,并不一定是越大越精准,什么样的量是最好的,就需要考量。而如果把全量的数据都拿来进行分析,那肯定是最准确的,而所谓大数据应该是全量数据。
这种大数据与传统的数据相比,具有非结构化、分布式、数据量巨大、数据分析由专家层变化为用户层、大量采用可视化展现方法等特点,这些特点正好适应了个性化和人性化的学习变化。传统数据诠释的是宏观的教育状况、整体的学生水平,且其采集方法、内容归类、分析构成等已被摸索出一套成熟的标准,数据更多是在阶段性的评估中获得。而大数据更关注微观、个体层面,要求时时处处采集信息,全面客观记录信息,大量采用可视化展现方法等等,帮助信息收集方获取精准材料。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29