
大数据火热,大数据可以改变职业体育。电影《点球成金》告诉我们,数据科学家能解决球队老板用钱解决不了的问题:打造一支冠军球队。“这并不奇怪”,哈佛大学定量社会科学研究院的主任Gary King说,“如果你总结一下那些数据分析能够起到巨大作用的行业的特点,你就会发现,职业体育行业基本具备了这些特点,这也就是为什么数据分析在职业体育中具有如此重要的作用的原因。”文中所说职业体育的特点就是可定量,而大数据则是通过定量的数据比对,来找到解决问题的方法。这一点对于世界第一运动的足球尤为重要,先来说说马云要来搅局的中超。
大数据是有能力帮助提升一个联赛的水平。2004年创立的中超,只是模仿英超取个名字,可是水平不怎么样,但差在什么地方,要从哪些方面来看提升,好像没有太明确的方向。当方向不确定的时候,出现笑话也就再所难免,我们在追求足球风格时,曾经提出了一个莫须有的“欧洲拉丁派”,甚至提出要锻炼 “叉腰肌”,而大数据时代则大不同了。
以前,关于足球的数据统计只有角球、任意球、红黄牌和射门次数,大数据时代,联赛水平的体现有了许多直观的参数,如跑动距离、有效比赛时间、移动轨迹、控球时间、传球次数等等。以跑动距离、有效比赛时间作比即可一分高下,2010年国际足联的相关统计,职业足球运动员全场跑动距离平均为10000米,中超球员为7000米左右;有效比赛时间,2011年中超的实际有效时间为场均49分03秒,韩国联赛为56分09秒,欧冠联赛场均比赛有效时间为62分39秒。
再从大数据的角度来看,2012年和2013年的中超平均跑动距离都是超过万米;有效时间,2012年超过50分钟,2014年的目标是60分钟,中超的水平确实有了提升,要不也不会有场均1.8万人的现场观众,好歹也是亚洲第一,世界第十。
一个联赛的水平,不光体现在竞技水平上,还会体现在对媒体、对球迷的服务上,从这个方面再看大数据对已经高度职业化的NBA的帮助。NBA官方网站之前有内部的统计工具,只有一些授权的媒体可以使用做一些高级的深入数据分析,2012年,NBA与数据分析解决方案公司合作,NBA从得分、进攻、防守、做球等几大类统计了多达90多项技术指标,数据公司帮助处理NBA高达4500万亿条分割的统计数据。
累不累的训练
联赛水平的根基在于日常训练,这一点大家应该没有什么疑义。但这一切没有在大数据时,训练更多地是从精神层面来要求,比如“女排精神”“三从一大”(从难、从严、从实战出发,大运动量),这种口号好提但是具体怎么做却无从下手。
当年流行于中国的12分钟体测,之前一直说是提高运动员的体能,到最后足协官员也承认“无氧耐力法测试的是一种精神力量”。
正是由于训练中长期缺乏数据,尤其是大数据的指导,才会只沦落到精神层面为主导。现在训练中应用大数据的例子,在足球发达国家例子已经很多了,而这两年中超的球队也在注重训练中大数据的使用,广州恒大、山东鲁能、江苏舜天等等。
这套高科技系统对队员们在训练中的心率、速度,距离,加速度和减速度等指标进行记录、分析和监控,监控队员的训练量是否达到或超过相应的指标,同时,也能预防队员在训练中出现的伤病。通过科学的训练方法,对队员们训练提高和预防伤病起到很大的作用。
我们用GPS和心率测量仪来监测每个球员的状态。从体能的角度来说,最显著的数据是冲刺数量、冲刺距离和每个球员投入的高强度运动次数。我们这样监测一整个赛季下来,就能知道一个球员目前状态是否疲劳,以及他需要多久的休息时间。
说完了团体运动的足球,再来看看更侧重于个人的速度滑冰,虽然它不是那么的职业化,但是这种更强调个人技巧的运动,大数据对其的作用更大。
之后,人们从数据方面分析,发现韩国队的拐弯时候,速度比其他国家的要快。通过这个大数据的分析,再结合慢镜头,人们发现了韩国队的先进技术:在过弯时,通过身体重点心转移,步点的转换,达到一个不减速的效果,甚至还可以加速。
大数据已经很大程度上影响到职业体育的水平,另一方面,对于职业体育来说,所从事的运动不同对于大数据有不同的应用需求,例如,足球和篮球所遇到的大数据问题是不一样的,团体与个人的运动又会是大不同。海量数据处理的复杂性,对数据中心的计算能力提出了挑战,英特尔就正利用自己在计算领域长久的积累,从支撑计算的芯片产品,到实现分析的解决方案,在职业体育上发挥着不可替代的作用。 好教练难求,但是经过计算和处理的多维度的数据却是可以普及和借鉴的。大数据改变职业体育,并赋予职业体育全新的商业价值,并非一件遥不可及的事。
当然大数据也有其局限性,埃弗顿主教练马丁内斯和他的球探里弗斯和布朗都认为“光凭数据就能买进某个球员”这种想法是十分荒谬的,博尔顿的分析研究总监布莱恩·普莱斯迪奇甚至举出了一个反例:自从他们的守门员开始研究对方的点球手的数据以后,他的扑点球效率反而降低了,过去两个赛季只有9%的成功率。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
正态分布与偏态分布的核心区别解析 在统计学中,数据的分布形态是理解数据特征、选择分析方法的基础。正态分布与偏态分布作为两 ...
2025-08-06基于 SPSS 的中介效应分析结果解读:揭示变量间的隐性关联 在社会科学与自然科学研究中,变量之间的关系往往并非简单的直接作用 ...
2025-08-06抖音数据分析师:驱动平台增长的幕后推手 在抖音这个日活用户数以亿计的超级平台上,每一次用户的滑动、点赞、评论,每一条 ...
2025-08-06解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-05大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-05CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-05CDA认证在国际市场上的认可度正在逐渐增长。CDA(Certified Data Analyst)认证,源自中国,面向全球,旨在提升数字化人才的数据 ...
2025-08-04本次活动市场价2000元,现面向会员免费开放,会员朋友更可以邀请一位非会员免费参加。 【活动目标】 ...
2025-08-04MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-04反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-04CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-04评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-01通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-01CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-01K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-07-31大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-07-31CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-07-31SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30