京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据火热,大数据可以改变职业体育。电影《点球成金》告诉我们,数据科学家能解决球队老板用钱解决不了的问题:打造一支冠军球队。“这并不奇怪”,哈佛大学定量社会科学研究院的主任Gary King说,“如果你总结一下那些数据分析能够起到巨大作用的行业的特点,你就会发现,职业体育行业基本具备了这些特点,这也就是为什么数据分析在职业体育中具有如此重要的作用的原因。”文中所说职业体育的特点就是可定量,而大数据则是通过定量的数据比对,来找到解决问题的方法。这一点对于世界第一运动的足球尤为重要,先来说说马云要来搅局的中超。
大数据是有能力帮助提升一个联赛的水平。2004年创立的中超,只是模仿英超取个名字,可是水平不怎么样,但差在什么地方,要从哪些方面来看提升,好像没有太明确的方向。当方向不确定的时候,出现笑话也就再所难免,我们在追求足球风格时,曾经提出了一个莫须有的“欧洲拉丁派”,甚至提出要锻炼 “叉腰肌”,而大数据时代则大不同了。
以前,关于足球的数据统计只有角球、任意球、红黄牌和射门次数,大数据时代,联赛水平的体现有了许多直观的参数,如跑动距离、有效比赛时间、移动轨迹、控球时间、传球次数等等。以跑动距离、有效比赛时间作比即可一分高下,2010年国际足联的相关统计,职业足球运动员全场跑动距离平均为10000米,中超球员为7000米左右;有效比赛时间,2011年中超的实际有效时间为场均49分03秒,韩国联赛为56分09秒,欧冠联赛场均比赛有效时间为62分39秒。
再从大数据的角度来看,2012年和2013年的中超平均跑动距离都是超过万米;有效时间,2012年超过50分钟,2014年的目标是60分钟,中超的水平确实有了提升,要不也不会有场均1.8万人的现场观众,好歹也是亚洲第一,世界第十。
一个联赛的水平,不光体现在竞技水平上,还会体现在对媒体、对球迷的服务上,从这个方面再看大数据对已经高度职业化的NBA的帮助。NBA官方网站之前有内部的统计工具,只有一些授权的媒体可以使用做一些高级的深入数据分析,2012年,NBA与数据分析解决方案公司合作,NBA从得分、进攻、防守、做球等几大类统计了多达90多项技术指标,数据公司帮助处理NBA高达4500万亿条分割的统计数据。
累不累的训练
联赛水平的根基在于日常训练,这一点大家应该没有什么疑义。但这一切没有在大数据时,训练更多地是从精神层面来要求,比如“女排精神”“三从一大”(从难、从严、从实战出发,大运动量),这种口号好提但是具体怎么做却无从下手。
当年流行于中国的12分钟体测,之前一直说是提高运动员的体能,到最后足协官员也承认“无氧耐力法测试的是一种精神力量”。
正是由于训练中长期缺乏数据,尤其是大数据的指导,才会只沦落到精神层面为主导。现在训练中应用大数据的例子,在足球发达国家例子已经很多了,而这两年中超的球队也在注重训练中大数据的使用,广州恒大、山东鲁能、江苏舜天等等。
这套高科技系统对队员们在训练中的心率、速度,距离,加速度和减速度等指标进行记录、分析和监控,监控队员的训练量是否达到或超过相应的指标,同时,也能预防队员在训练中出现的伤病。通过科学的训练方法,对队员们训练提高和预防伤病起到很大的作用。
我们用GPS和心率测量仪来监测每个球员的状态。从体能的角度来说,最显著的数据是冲刺数量、冲刺距离和每个球员投入的高强度运动次数。我们这样监测一整个赛季下来,就能知道一个球员目前状态是否疲劳,以及他需要多久的休息时间。
说完了团体运动的足球,再来看看更侧重于个人的速度滑冰,虽然它不是那么的职业化,但是这种更强调个人技巧的运动,大数据对其的作用更大。
之后,人们从数据方面分析,发现韩国队的拐弯时候,速度比其他国家的要快。通过这个大数据的分析,再结合慢镜头,人们发现了韩国队的先进技术:在过弯时,通过身体重点心转移,步点的转换,达到一个不减速的效果,甚至还可以加速。
大数据已经很大程度上影响到职业体育的水平,另一方面,对于职业体育来说,所从事的运动不同对于大数据有不同的应用需求,例如,足球和篮球所遇到的大数据问题是不一样的,团体与个人的运动又会是大不同。海量数据处理的复杂性,对数据中心的计算能力提出了挑战,英特尔就正利用自己在计算领域长久的积累,从支撑计算的芯片产品,到实现分析的解决方案,在职业体育上发挥着不可替代的作用。 好教练难求,但是经过计算和处理的多维度的数据却是可以普及和借鉴的。大数据改变职业体育,并赋予职业体育全新的商业价值,并非一件遥不可及的事。
当然大数据也有其局限性,埃弗顿主教练马丁内斯和他的球探里弗斯和布朗都认为“光凭数据就能买进某个球员”这种想法是十分荒谬的,博尔顿的分析研究总监布莱恩·普莱斯迪奇甚至举出了一个反例:自从他们的守门员开始研究对方的点球手的数据以后,他的扑点球效率反而降低了,过去两个赛季只有9%的成功率。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09表结构数据作为结构化数据的核心载体,其“获取-加工-使用”全流程,是CDA(Certified Data Analyst)数据分析师开展专业工作的 ...
2026-02-09在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03