ARIMA 模型:
描述时间序列数据的变化规律和行为,它允许模型中包含趋势变动、季节变动、循环变 动和随机波动等综合因素影响。具有较高的预测精度,可以把握过去数据变动模式,有助于 解释预测变动规律,回答为什么这样本想早点完成这个时间序列的主题,但最近一直非常多的事情,又 耽搁了这么长时间。朋友们问的问题没有收尾总是不好,抓紧时间完成吧。 因为,后天要参加中国电信集团的一个 EDA 论坛,要仔细准备发言稿!在交流的过程 中,发现大家都对预测问题非常关注,尤其是数据挖掘领域,有时候分类问题与预测问题在 表达上区分不开,有时候分类就是预测,比如通过判别分析、C5.0 规则或 Logistics 回归 进行监督类建模,得到的结论说该客户是什么类别等级,似乎也可以说是预测;当然,如果 能够预测该消费者什么时候流失,也就是进行了分类;这样说吧,其实有时候并不需要严格 区分分类和预测,关键是时间点。从这也可以看出,预测问题内涵和外延是非常宽泛的,但 研究者心中要有数,这决定了你得到的结果该如何应用。 前面的博文提到,如果我们考虑时间序列预测包含有预测和干扰变量如何解决的问题。 从方法角度讲,过去没有统计分析软件要完成预测可以说是困难的,现在有了软件工具 就方便多了。 从技术角度讲:
预测模型如果能够排除因为异常原因造成的时间点事件和时间段时间,就好了。例 如某天停电没有开业,或者某一段时间比如发生甲型 H1NI 一周没有营业收入,这 些事件必须能够告诉模型未来不会再发生了;当然,我们也要把未来会重复发生的干扰因素纳入模型,例如:我们学校某天要开 运动会,小卖部的可乐销量一定提高,或者我们学校 7-8 月份放暑假,销量一定减 少,像这样的时间点和时间段事件未来会重复出现,我们如果能够告诉模型,那么 预测会更准确。
当然如果我们建立的模型能够预测未来,并能够将未来可预见的事件,包括时间点 和时间段干扰纳入预测是非常好的事情啦!
甚至,我们应该能够把预测模型中的,预测未来周期内的不可预见的时间点和时间 段随时干预预测结果,这就需要考虑如何将预测模型导入生产经营分析系统了。
下面的数据延续前两篇的案例, 只是增加了自变量, (因为手头这个案例没有干预因素变量)
在我们增加了 5 个自变量后,采用预测建模方法,选择专家建模器,但限制只在 ARIMA 模 型中选择。
确定后,得到分析结果,我们现在来看一下与原来的模型有什么不同。
从预测值看,比前一模型有了改进,至少这时候的模型捕捉了历史数据中的下降峰值, 这可以认为是当前比较适合的拟合值了。 如果我们观察预测结果,可以发现模型选择了两个预测变量。注意:使用专家建模器时, 只有在自变量与因变量之间具有统计显著性关系时才会包括自变量。如果选择 ARIMA 模 型,“变量”选项卡上指定的所有自变量(预测变量)都包括在该模型中,这点与使用专家建 模器相反;
当确定了最终选择的预测模型和方法后,我们就可以预测未来了,当然你要指定预测未 来的时间点,这里我们时间包括年、季度和月份;假定我们预测未来半年的销售收入。 我们分别设定:预测值输出,95%置信度的上下限。注意:SPSS 中文环境有个小 Bug,
必须改一下名字!
在选项中,选择你的预测时间,预测期将根据你事先定义的数据时间格式填写。(后面 的模型为了让大家看清楚,实际上我预测了一年的数据,也就是 2010 年的 4 个季度的 12 个月)。
自变量的选择问题,在预测未来半年的销售收入中,ARIMA 模型可以把其它预测变量 纳入考虑,但如何确定未来这些预测变量的值呢? 主要方法可以考虑:1)选择最末期数据;2)选择近三期数据的平均;3)选择近三期 的移动平均 这里我们选近三期移动平均作为预测自变量数值。
上面就是预测结果!于此同时,SPSS 活动数据集中也存储了预测值!
最后,我们要解决时间序列预测的检验和统计问题!说实在话,我比较关注偏好商业应用,就是看得见就做得到!从上面的分析,我们基本上就知道了哪种预测模型更好,也就不去较真只有专业统计学者才关心的统计和检验问题, 把这些交给统计专家或学术研究吧! 如 ( 果你是写学术论文,就必须强调这一点了!) 实际上我们可以通过软件得到各种统计检验指标和统计检验图表!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09