
大数据的四大误区_数据分析师
近年来,随着云计算和大数据的迅猛发展,已然让“大数据”和“云计算”成为了当下最时髦的词汇。从IT界到、金融界,再到物流界、营销界,乃至医疗界、教育界……无论是界内界外人士几乎都已快形成“言必称云”、“言必称大数据”的口头禅。
但如果真遇到一个“较真儿的”,发出这样的提问——到底什么是大数据?大数据到底有什么价值?我怎样才能得到大数据价值?……是那头黄色的Hadoop小象?是动辄XXXBIT的高大上数据量?又或者是千万级别的用户信息?那估计很多口口声声不离大数据的人可能都言语含糊解释不清了。
那么,到底该如何来看待大数据呢?还是听听专家的观点吧。大数据单从字面意思似乎不难理解,可以认为是海量级的数据,但是在这海量级的数据究竟意味着什么,这在很多业内外人士的概念里还纯在着一些认识误区。
大数据误区一:只要大就好
当技术哥在会议室里刚说完这句话的时候,秘书MM正巧推门进来,微微愣了一下就脸红红地退出去了。
如今,很多人提起大数据,如果不提上几嘴“日处理数据量XXGB,上传图片XXGB,并发数XXX”“Hadoop集群拥有XXXX节点,总存储XXPB”……诸如此类的技术语言,都很怕别人觉得自己不专业。但是,难道真的只有数据大了,才能达到大数据的登峰境界?才能数人合一地达成大一统的目的?
数据如果仅仅是大那是没多大用处的!就好像资金的意义在于如何使用周转一样,数据大了,但不使用,让它孤零零地偏安机房一隅,那它就不是大数据了,而是有点“败家子”的意思。
比如不少传统的门户网站,基本上就处于“坐拥金 山却无福消费”的境况。每天上亿的用户量,却只是简单的广告呈现,没有通过对数据的分析产生更多价值。
大数据误区二:只有技术大牛才懂大数据
虽然很多人口口声声离不开大数据,但是真问他到底懂多少时,其中一部分人可能会说:“我就是懂些皮毛,真正技术层面的大数据我也不懂,你还是问那些技术大牛去吧,他们才真懂。”
其实这样的观点并不全对。比如诸葛亮很懂兵法,他知道该在哪里摆阵,该在哪里伏兵……但是,他不必知道关羽是如何耍大刀,也不必知道张飞的丈八蛇矛在打仗时是扎还是砍。
其实,对于大数据的应用更多的是一种战略能力,而非细节的执行技能,这种能力是可以帮助决策者能从无尽的数据里看出商机看出价值,从而为企业带来更高的利润。而作为决策者并不用太关心在技术细节层面,大数据到底怎么技术生成,又是如何理顺提升用户体验的。
大数据误区三:是个公司都得上大数据
在GMIC上,Evernote的CEO Phil Libin就明确表明不带大数据一起玩儿,自己产品的商业模式就是向用户收费,让他们甘心为产品体验付费。
虽然大数据固然是个香饽饽,但不是所有人都能消化得了,或者说并不是所有都有上大数据的必要,而是要衡量企业的现状,看清楚主次矛盾,或是要考量好投入产出的回报率,大数据并不是适合所有企业的现状。
比如,对于中小型网站来说,一上来就盲目追求先进“高大上”的技术架构,那就有点“宰牛刀杀鸡”的意思。对于这类网站,首要考虑的是商业运作模式和推广,只有等到用户量飚升后,再去考虑技术升级这种大事儿。
再比如,在GMIC上,Evernote的CEO Phil Libin就明确表明不带大数据一起玩儿,自己产品的商业模式就是向用户收费,让他们甘心为产品体验付费。
如同一个双选题:A.日登陆用户1000人,架构完全参照美国亚马逊从不宕机;B.日登陆用户10万人,每天因为高并发不得不宕机三次。你会选什么?
大数据误区四:我就要海量数据
自从大数据概念火了以后,不少企业在遇到问题的时候,总是会情不自禁的就会想到“是不是我的数据量不够?”“是不是如果有了海量的大数据就能变得更好?”其实,这又是陷入了一个误区。
这又回到了大数据价值和金钱价值的类比概念上。比如用搜索引擎搜索一下“存款 贬值”,那么很快就可以发现类似这样的信息:“五十年前的百万变13块”, “一万元存一年赔19元”……显然,不流动的钱,是越放越没有价值,而基数越大,可能导致的损失就越大。
金钱如此,大数据亦然。只有像比特币玩家们一样,不停地使用数据,并以无比的热情挖掘数据背后的关系和价值,才能如滚雪球一般,使数据之间的相互关系更丰富更完善。同理,对于企业的大数据来说,只有充分利用大数据,让大数据充分流动起来,不断的实现增值效果,那么才有机会更大的释放大数据的能量。
因此,对于企业决策者来说,看待大数据必须有一个清醒的认识,当在脑袋发热准备花大价钱上大数据之前,都一定得先想明白透彻了:“我真的需要大数据吗?大数据真的能为我所驾驭吗?”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19