spss的数据分析报告_spss的数据分析实例_spss的数据分析(3)_数据分析师
4、 相关分析。相关分析是分析客观事物之间关系的数量分析法,明确客观事物之间有怎 样的关系对理解和运用相关分析是极其重要的。 函数关系是指两事物之间的一种一一对应的关系,即当一个变量 X 取一定值时,另一 个变量函数 Y 可以根据确定的函数取一定的值。另一种普遍存在的关系是统计关系。统计 关系是指两事物之间的一种非一一对应的关系,即当一个变量 X 取一定值时,另一个变量
Y 无法根据确定的函数取一定的值。统计关系可分为线性关系和非线性关系。 事物之间的函数关系比较容易分析和测度, 而事物之间的统计关系却不像函数关系那样 直接,但确实普遍存在,并且有的关系强有的关系弱,程度各有差异。如何测度事物之间的 统计关系的强弱是人们关注的问题。 相关分析正是一种简单易行的测度事物之间统计关系的 有效工具。
Correlations Beginning Months Salary since Hire .880** .084 .000 .067 474 474 1 -.020 .668 474 474 -.020 1 .668 474 474 .045 .003 .327 .948 474 474 -.010 .054 .833 .244 473 473 Previous Experience (months) -.097* .034 474 .045 .327 474 .003 .948 474 1 474 .802** .000 473
Current Salary
Beginning Salary
Months since Hire
Previous Experience (months) Years
Pearson Correlation Sig. (2-tailed) N Pearson Correlation Sig. (2-tailed) N Pearson Correlation Sig. (2-tailed) N Pearson Correlation Sig. (2-tailed) N Pearson Correlation Sig. (2-tailed) N
Current Salary 1 474 .880** .000 474 .084 .067 474 -.097* .034 474 -.144** .002 473
Years -.144** .002 473 -.010 .833 473 .054 .244 473 .802** .000 473 1 473
**. Correlation is significant at the 0.01 level (2-tailed). *. Correlation is significant at the 0.05 level (2-tailed).
上表是对本次分析数据中,现工资、起始工资、本单位工作时间、以前工作时间、年龄五个 变量间的相关分析,表中相关系数旁边有两个星号(**)的,表示显著性水平为 0.01 时, 仍拒绝原假设。一个星号(*)表示显著性水平为 0.05 是仍拒绝原假设。先以现工资这一变 量与其他变量的相关性为例分析,由上表可知,现工资与起始工资的相关性最大,相关系数 为 0.880,而与在本单位的工作时间相关性最小,相关系数为 0.084。 5、 参数检验。 首先对现工资的分布做正态性检验,结果如下:
Histogram
120
100
80
Frequency
60
40
20 M ean = $34, 419. 57 St d. D ev. = $17, 075. 661 N = 474 $0 $20, 000 $40, 000 $60, 000 $80, 000 $100, 000 $120, 000 $140, 000
0
C urrent S alary
由上图可知,现工资的分布可近似看作符合正态分布,现推断现工资变量的平均值是否为
4
$3,000,0,因此可采取单样本 t 检验来进行分析。分析如下:
One-Sample Statistics Std. Error N Mean Std. Deviation Mean
One-Sample Test Test Value = 30000 95% Confidence Interval Mean t Current Salary 5.635 df 473 Sig. (2-tailed) .000 Difference $4,419.568 of the Difference Lower $2,878.40 Upper $5,960.73
由 One-Sample Statistics 可知 ,474 名 职工的现工资 平均值为¥ 34,419.57 ,标准差 为 $17,075.661,均值标准误差为$784.311。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03