京公网安备 11010802034615号
经营许可证编号:京B2-20210330
spss的数据分析报告_spss的数据分析实例_spss的数据分析(3)_数据分析师
4、 相关分析。相关分析是分析客观事物之间关系的数量分析法,明确客观事物之间有怎 样的关系对理解和运用相关分析是极其重要的。 函数关系是指两事物之间的一种一一对应的关系,即当一个变量 X 取一定值时,另一 个变量函数 Y 可以根据确定的函数取一定的值。另一种普遍存在的关系是统计关系。统计 关系是指两事物之间的一种非一一对应的关系,即当一个变量 X 取一定值时,另一个变量
Y 无法根据确定的函数取一定的值。统计关系可分为线性关系和非线性关系。 事物之间的函数关系比较容易分析和测度, 而事物之间的统计关系却不像函数关系那样 直接,但确实普遍存在,并且有的关系强有的关系弱,程度各有差异。如何测度事物之间的 统计关系的强弱是人们关注的问题。 相关分析正是一种简单易行的测度事物之间统计关系的 有效工具。
Correlations Beginning Months Salary since Hire .880** .084 .000 .067 474 474 1 -.020 .668 474 474 -.020 1 .668 474 474 .045 .003 .327 .948 474 474 -.010 .054 .833 .244 473 473 Previous Experience (months) -.097* .034 474 .045 .327 474 .003 .948 474 1 474 .802** .000 473
Current Salary
Beginning Salary
Months since Hire
Previous Experience (months) Years
Pearson Correlation Sig. (2-tailed) N Pearson Correlation Sig. (2-tailed) N Pearson Correlation Sig. (2-tailed) N Pearson Correlation Sig. (2-tailed) N Pearson Correlation Sig. (2-tailed) N
Current Salary 1 474 .880** .000 474 .084 .067 474 -.097* .034 474 -.144** .002 473
Years -.144** .002 473 -.010 .833 473 .054 .244 473 .802** .000 473 1 473
**. Correlation is significant at the 0.01 level (2-tailed). *. Correlation is significant at the 0.05 level (2-tailed).
上表是对本次分析数据中,现工资、起始工资、本单位工作时间、以前工作时间、年龄五个 变量间的相关分析,表中相关系数旁边有两个星号(**)的,表示显著性水平为 0.01 时, 仍拒绝原假设。一个星号(*)表示显著性水平为 0.05 是仍拒绝原假设。先以现工资这一变 量与其他变量的相关性为例分析,由上表可知,现工资与起始工资的相关性最大,相关系数 为 0.880,而与在本单位的工作时间相关性最小,相关系数为 0.084。 5、 参数检验。 首先对现工资的分布做正态性检验,结果如下:
Histogram
120
100
80
Frequency
60
40
20 M ean = $34, 419. 57 St d. D ev. = $17, 075. 661 N = 474 $0 $20, 000 $40, 000 $60, 000 $80, 000 $100, 000 $120, 000 $140, 000
0
C urrent S alary
由上图可知,现工资的分布可近似看作符合正态分布,现推断现工资变量的平均值是否为
4
$3,000,0,因此可采取单样本 t 检验来进行分析。分析如下:
One-Sample Statistics Std. Error N Mean Std. Deviation Mean
One-Sample Test Test Value = 30000 95% Confidence Interval Mean t Current Salary 5.635 df 473 Sig. (2-tailed) .000 Difference $4,419.568 of the Difference Lower $2,878.40 Upper $5,960.73
由 One-Sample Statistics 可知 ,474 名 职工的现工资 平均值为¥ 34,419.57 ,标准差 为 $17,075.661,均值标准误差为$784.311。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19