京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据基础设施论坛:如何构建符合大数据时代的网络基础设施
2014中国大数据技术大会第二日上午的大数据基础设施论坛上,Mellannox亚太区市场开发总监刘通、武汉绿色网络信息服务有限责任公司副总经理雷葆华、浪潮云产品部兼渠道推进部总经理王峰、百度基础架构部高级架构师 柴华和博科中国区技术总监 谷增云五位专家主要专注于网络层面的相关问题展开的演讲。
图:Mellannox亚太区市场开发总监刘通
Mellannox亚太区市场开发总监刘通带来了主题为“高速网络InfiniBand加速大数据应用”的演讲。他表示基础设施和上层的应用有着非常紧密的联系,软硬件结合才更有意义。在他看来,InfiniBand是一个完全自主且非常智能的二层网络,从诞生的那天其就是SDN的网络。
“高达56Gb/s的带宽(100G EDR InfiniBand也已问世)以及低于700纳秒的延迟为高速数据传输提供了保证。InfiniBand内置支持RDMA(远端内存直接访问)网络传输技术,提供内存零拷贝、内核旁路、协议卸载的优势,从而大幅下载网络通信对CPU资源的占用,这些优势是传统TCP/IP通信协议所不具备的。”他说道。
图:武汉绿色网络信息服务有限责任公司副总经理雷葆华
武汉绿色网络信息服务有限责任公司副总经理雷葆华发表主题为“大数据在网络服务中的应用及网络演进”的演讲。 他就网络运营中的大数据探索和大数据时代的智能化网络基础设施演进两个内容进行了阐述。他介绍了基于网络的大数据体系架构的三个层次:第一个是大数据海量数据采集及预处理;第二个是DMP数据管理平台汇聚了各省的数据资源,并进行安全去隐私化处理;第三个是合作伙伴可以利用运营商大数据平台的资源,进行数据的深入分析挖掘。
他认为IDC是互联网产业的基础战略资源,作为信息中枢,直接支撑整个互联网产业的发展。而大数据时代,网络演进发生了三个变化:1.不定向突发流量的挑战;2.云数据中心互联;3.云开数据中心内部组网支持云服务。归纳来说就是业务变化驱动网络架构的变化:1. 业务流量由纵向为主演进为横向为主;2. 大型异构化,更多的节点数跨数据中心;虚拟化:3. 同一物理服务器的虚拟机之间的通信、跨物理服务器的虚拟机通信时的虚拟机标识、虚拟机迁移。
图:浪潮云产品部兼渠道推进部总经理王峰
浪潮云产品部兼渠道推进部总经理王峰发表了主题为“开放融合的云数据中心”的演讲。过去的数据中心是为某一个应用做的,我们的数据中心的效率并不是非常高,然后提出了软件定义的计算和存储,他表示希望未来在信息领域做的所有东西都是可以软件定义的,所有的资源都可以被抽象化、池化 和自动化。
传统的数据中心架构,计算、存储和网络资源是彼此独立,不同应用更是要求不同的设备和网络,利用应用软件定义的数据中心能够简化IT应用基础架构,让其不再是整个云计算、大数据中最重的那一部分。最后,他总结了两点:1. SDDC将完全改变数据中心的设备形态、服务形式,甚至IT应用的开展方式;2. 在完全融合、池化、软件定义的数据中心到来之前,我们还有几个必经阶段。
图:百度基础架构部高级架构师 柴华
百度基础架构部高级架构师 柴华介绍了百度分布式计算平台。他先是介绍了百度MapReduce的发展历程:2004年MapReduce论文发表,2007年上线了基于Haddop的百度MR,2011年百度MR单集群规模达到5000台,2013年百度MR单集群达到13000台,2014年 百度DCE发布,DAG引擎上线。
演讲中,柴华重点介绍了百度分布式计算的“七剑客”:1. 大规模离线计算平台DCE(MapReduce/DAG模型),2. 大规模机器学习平台MPI(BSP模型),3. 新一代大规模机器学习框架ELF(Parameter server架构),4. 毫秒级实时计算系统Dstream,5. 小批量流式计算系统Task Manger,6. 基于内存的开源分布式计算框架Spark,7. 分布式Trace系统Rig。
博科中国区技术总监 谷增云
博科中国区技术总监谷增云,带来了“用于大数据可视化的SDN技术”技术分享,主要讲述SDN技术,在大规模、超高性能的大数据采集方面的应用。其中Vyatta平台的架构包含三个核心层:NFV连接服务、SDN结构服务和功能编排。这个开放式架构的每一层都是模块化的,让客户能够选择适合其特定数据中心要求的产品和/或解决方案。这个平台开放和模块的特性实现了互操作性,为客户带来更好的选择。层间通信采用基于标准的透明协议和方法,包括REST APIs和NETCONF/YANG模式,确保配置的互操作性。最后针对SDN/Openflow技术如何在数Tbps带宽容量的数据中心、骨干网随时自动化的采集上应用做了简要的分析。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27