
美国将大数据应用于国际学生能力评估计划(PISA)_数据分析师
大数据是教育产业重塑商业模式,促使政府、商业组织和社会企业家通力合作将实证、创意、资源整合起来成就全民终身教育的基础。因此未来教育界的巨头将是那些能够把学术权威与信息和社交网络的协同效应结合起来的领军者。更为重要的是,这将使人们在运用大数据的基础上进行应用创新。这要求体制上的协同创新,要采取更有进取、更完善的公共政策,来改变目前教育界弊病:工业化的组织模式、官僚的和以应诉导向的工作方式和策略。
这不仅仅是增加教育透明度和公共责任的问题,甚至可以说这不是主要问题。简单地把数据公布于众不能改变学生学习,老师授课和学校运作的模式。信息公开并不能自然而然地引领我们运用大数据改革教育方法。相反这一做法经常造成民众和政府在信息的控制和所有权方面的对立情绪。
运用大数据实现教育产业转型的前提是摒弃我们社会的“只读”模式。透明和合作并举。目前的情况是,坐在大办公楼里一角的某位教育专家制定了规则,成千上百名学生和老师只能遵从,没有人知道这些决定是怎么来的。如果我们能分享数据、培育民间创新和实验、开拓创造性文化,大数据可以实现大范围的信任。难怪世界经济合作与发展组织(OECD)一项关于成人技能的最新调查显示:一个人的读写能力越好,就越容易信任他人。
协同消费就是很好的一个印证。如今,我们与陌生人共享他们的汽车,甚至是房子。协同消费使人人都可以成为小微企业家,其发展驱动力在于建立与陌生人的信任。想想我们在商业世界里的行为,我们在信任他人的基础上提供信息,心甘情愿地交出信用卡数据,和各个商业行业中可信的陌生人建立联系。教育界的数据分享离我们还非常遥远。
但是这应该是我们努力的方向。几年前我们引入了国际学生能力评估计划(PISA),一项针对各国15岁青少年可比较技能的全球调研。PISA提供了大量有关教育质量的数据。PISA计划使公共教育政策的制定更加透明、高效,帮助教育力量的分配重获平衡。在微观层面,仍存有很多质疑:老师认为这是政府又一个想控制他们的问责工具。那我们该做什么?今年我们实施了“我的PISA”项目,将PISA的分析工具分发到学校。现在每个学校可以用它与全球各地相似或完全不同的学校进行比较分析。
突然间原有的状态发生了改变;学校开始使用这些数据。例如,美国弗吉尼亚州费尔法克斯郡的十所学校的校长和老师们围绕第一份报告的结论开始了长达一年的讨论。在当地教育部门(和OECD)的帮助下,他们将开始第二轮分析,进行深入的数据挖掘,更好地了解如何相互类比,并和世界各地的其他学校进行类比。这些校长和老师不再把自己看作全球舞台上的观众,而是合作的队友。换言之,在费尔法克斯郡,大数据正在建立大范围的信任。
英语原文:
Big data is the foundation on which education can reinvent its business model and build the coalition of governments, businesses, and social entrepreneurs that can bring together the evidence, innovation and resources to make lifelong learning a reality for all. So the next educational superpower might be the one that can combine the hierarchy of institutions with the power of collaborative information flows and social networks. More than anything else, this will hinge on getting people to generate innovative applications on top of big data. It’s about the co-creation of governance, about delivering more progressive and better policies than the industrial work organisation and the bureaucratic and litigation-oriented tools and strategies that we are used to in education.
This isn’t just or even mainly about improved transparency and public accountability in education. Throwing education data into the public space does not change the ways in which students learn, teachers teach and schools operate. It does not lead to people doing anything with that data and transforming education in ways that will actually change education practice. On the contrary, it often results simply in adversarial relationships between civil society and government over the control and ownership of information.
The prerequisite for using big data as a catalyst to change education practice is to get out of the “read-only” mode of our societies. It’s about combining transparency with collaboration. The way in which educational institutions often work is that you have a single expert sitting somewhere in a corner who determines the application of rules and regulations affecting hundreds of thousands of students and teachers – and nobody can figure out how those decisions were made. Big data can lead to big trust if we make that data available, train civic innovators, experiment, create a maker culture. It is no surprise that OECD’s new Survey of Adult Skills shows that the more proficient people are in literacy, the more they trust others.
Collaborative consumption provides a great example of this. These days, people share their cars and even their apartments with strangers. Collaborative consumption has made people micro-entrepreneurs – and its driving engine is building trust between strangers. Think about it: in the business world, we have evolved from trusting people to provide information, to willingly handing over credit card data, to connecting trustworthy strangers in all sorts of marketplaces. We are light-years away from that when it comes to data about education.
But here’s how we can get a little closer. Some years ago we created PISA, a global survey that examines the skills of 15-year-olds in ways that are comparable across countries. PISA has created huge amounts of big data about the quality of schooling outcomes. PISA has also helped to change the balance of power in education by making public policy in the field of education more transparent and more efficient. At the micro-level, there were still a lot of sceptics: teachers thought this was just another accountability tool through which governments wanted to control them. So what did we do? This year we put in place a kind of “MyPISA” – PISA-type instruments that we circulated out into the field. Now every school can figure out how it compares with other schools anywhere else in the world, schools that are similar to them or schools that are very different.
Suddenly, the dynamic has changed; schools are beginning to use that data. Ten schools in Fairfax county in Virginia, for example, have started a year-long discussion among principals and teachers based on the results of the first reports. With the help of district offices (and the OECD), they will be conducting secondary analyses to dig deeper into their data and understand how their schools compare with each other and with other schools around the world. Those principals and teachers are beginning to see themselves as teammates – not just spectators – on a global playing field. In other words, in Fairfax county, big data is building big trust.
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-29从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-292025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-29PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-29t 检验与 Wilcoxon 检验:数据差异分析的两大核心方法 在数据分析的广阔领域中,判断两组或多组数据之间是否存在显著差异是一项 ...
2025-07-29PowerBI 添加索引列全攻略 在使用 PowerBI 进行数据处理与分析时,添加索引列是一项极为实用的操作技巧。索引列能为数据表中的每 ...
2025-07-29