京公网安备 11010802034615号
经营许可证编号:京B2-20210330
美国将大数据应用于国际学生能力评估计划(PISA)_数据分析师
大数据是教育产业重塑商业模式,促使政府、商业组织和社会企业家通力合作将实证、创意、资源整合起来成就全民终身教育的基础。因此未来教育界的巨头将是那些能够把学术权威与信息和社交网络的协同效应结合起来的领军者。更为重要的是,这将使人们在运用大数据的基础上进行应用创新。这要求体制上的协同创新,要采取更有进取、更完善的公共政策,来改变目前教育界弊病:工业化的组织模式、官僚的和以应诉导向的工作方式和策略。
这不仅仅是增加教育透明度和公共责任的问题,甚至可以说这不是主要问题。简单地把数据公布于众不能改变学生学习,老师授课和学校运作的模式。信息公开并不能自然而然地引领我们运用大数据改革教育方法。相反这一做法经常造成民众和政府在信息的控制和所有权方面的对立情绪。
运用大数据实现教育产业转型的前提是摒弃我们社会的“只读”模式。透明和合作并举。目前的情况是,坐在大办公楼里一角的某位教育专家制定了规则,成千上百名学生和老师只能遵从,没有人知道这些决定是怎么来的。如果我们能分享数据、培育民间创新和实验、开拓创造性文化,大数据可以实现大范围的信任。难怪世界经济合作与发展组织(OECD)一项关于成人技能的最新调查显示:一个人的读写能力越好,就越容易信任他人。
协同消费就是很好的一个印证。如今,我们与陌生人共享他们的汽车,甚至是房子。协同消费使人人都可以成为小微企业家,其发展驱动力在于建立与陌生人的信任。想想我们在商业世界里的行为,我们在信任他人的基础上提供信息,心甘情愿地交出信用卡数据,和各个商业行业中可信的陌生人建立联系。教育界的数据分享离我们还非常遥远。
但是这应该是我们努力的方向。几年前我们引入了国际学生能力评估计划(PISA),一项针对各国15岁青少年可比较技能的全球调研。PISA提供了大量有关教育质量的数据。PISA计划使公共教育政策的制定更加透明、高效,帮助教育力量的分配重获平衡。在微观层面,仍存有很多质疑:老师认为这是政府又一个想控制他们的问责工具。那我们该做什么?今年我们实施了“我的PISA”项目,将PISA的分析工具分发到学校。现在每个学校可以用它与全球各地相似或完全不同的学校进行比较分析。
突然间原有的状态发生了改变;学校开始使用这些数据。例如,美国弗吉尼亚州费尔法克斯郡的十所学校的校长和老师们围绕第一份报告的结论开始了长达一年的讨论。在当地教育部门(和OECD)的帮助下,他们将开始第二轮分析,进行深入的数据挖掘,更好地了解如何相互类比,并和世界各地的其他学校进行类比。这些校长和老师不再把自己看作全球舞台上的观众,而是合作的队友。换言之,在费尔法克斯郡,大数据正在建立大范围的信任。
英语原文:
Big data is the foundation on which education can reinvent its business model and build the coalition of governments, businesses, and social entrepreneurs that can bring together the evidence, innovation and resources to make lifelong learning a reality for all. So the next educational superpower might be the one that can combine the hierarchy of institutions with the power of collaborative information flows and social networks. More than anything else, this will hinge on getting people to generate innovative applications on top of big data. It’s about the co-creation of governance, about delivering more progressive and better policies than the industrial work organisation and the bureaucratic and litigation-oriented tools and strategies that we are used to in education.
This isn’t just or even mainly about improved transparency and public accountability in education. Throwing education data into the public space does not change the ways in which students learn, teachers teach and schools operate. It does not lead to people doing anything with that data and transforming education in ways that will actually change education practice. On the contrary, it often results simply in adversarial relationships between civil society and government over the control and ownership of information.
The prerequisite for using big data as a catalyst to change education practice is to get out of the “read-only” mode of our societies. It’s about combining transparency with collaboration. The way in which educational institutions often work is that you have a single expert sitting somewhere in a corner who determines the application of rules and regulations affecting hundreds of thousands of students and teachers – and nobody can figure out how those decisions were made. Big data can lead to big trust if we make that data available, train civic innovators, experiment, create a maker culture. It is no surprise that OECD’s new Survey of Adult Skills shows that the more proficient people are in literacy, the more they trust others.
Collaborative consumption provides a great example of this. These days, people share their cars and even their apartments with strangers. Collaborative consumption has made people micro-entrepreneurs – and its driving engine is building trust between strangers. Think about it: in the business world, we have evolved from trusting people to provide information, to willingly handing over credit card data, to connecting trustworthy strangers in all sorts of marketplaces. We are light-years away from that when it comes to data about education.
But here’s how we can get a little closer. Some years ago we created PISA, a global survey that examines the skills of 15-year-olds in ways that are comparable across countries. PISA has created huge amounts of big data about the quality of schooling outcomes. PISA has also helped to change the balance of power in education by making public policy in the field of education more transparent and more efficient. At the micro-level, there were still a lot of sceptics: teachers thought this was just another accountability tool through which governments wanted to control them. So what did we do? This year we put in place a kind of “MyPISA” – PISA-type instruments that we circulated out into the field. Now every school can figure out how it compares with other schools anywhere else in the world, schools that are similar to them or schools that are very different.
Suddenly, the dynamic has changed; schools are beginning to use that data. Ten schools in Fairfax county in Virginia, for example, have started a year-long discussion among principals and teachers based on the results of the first reports. With the help of district offices (and the OECD), they will be conducting secondary analyses to dig deeper into their data and understand how their schools compare with each other and with other schools around the world. Those principals and teachers are beginning to see themselves as teammates – not just spectators – on a global playing field. In other words, in Fairfax county, big data is building big trust.
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28