京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据如何引发职业体育的大变革_数据分析师
电影《点球成金》告诉我们,数据科学家能解决球队老板用钱解决不了的问题:打造一支冠军球队。“这并不奇怪”,哈佛大学定量社会科学研究院的主任Gary King说,“如果你总结一下那些数据分析能够起到巨大作用的行业的特点,你就会发现,职业体育行业基本具备了这些特点,这也就是为什么数据分析在职业体育中具有如此重要的作用的原因。”文中所说职业体育的特点就是可定量,而大数据则是通过定量的数据比对,来找到解决问题的方法。这一点对于世界第一运动的足球尤为重要。
大数据分析好的联赛标准
大数据是有能力帮助提升一个联赛的水平。2004年创立的中超,只是模仿英超取个名字,可是水平不怎么样,但差在什么地方,要从哪些方面来看提升,好像没有太明确的方向。当方向不确定的时候,出现笑话也就再所难免,我们在追求足球风格时,曾经提出了一个莫须有的“欧洲拉丁派”,甚至提出要锻炼 “叉腰肌”,而大数据时代则大不同了。
以前,关于足球的数据统计只有角球、任意球、红黄牌和射门次数,大数据时代,联赛水平的体现有了许多直观的参数,如跑动距离、有效比赛时间、移动轨迹、控球时间、传球次数等等。以跑动距离、有效比赛时间作比即可一分高下,2010年国际足联的相关统计,职业足球运动员全场跑动距离平均为10000米,中超球员为7000米左右;有效比赛时间,2011年中超的实际有效时间为场均49分03秒,韩国联赛为56分09秒,欧冠联赛场均比赛有效时间为62分39秒。
再从大数据的角度来看,2012年和2013年的中超平均跑动距离都是超过万米;有效时间,2012年超过50分钟,2014年的目标是60分钟,中超的水平确实有了提升,要不也不会有场均1.8万人的现场观众,好歹也是亚洲第一,世界第十。
一个联赛的水平,不光体现在竞技水平上,还会体现在对媒体、对球迷的服务上,从这个方面再看大数据对已经高度职业化的NBA的帮助。NBA官方网站之前有内部的统计工具,只有一些授权的媒体可以使用做一些高级的深入数据分析,2012年,NBA与数据分析解决方案公司合作,NBA从得分、进攻、防守、做球等几大类统计了多达90多项技术指标,数据公司帮助处理NBA高达4500万亿条分割的统计数据。
所以到当2013年圣诞节时,NBA可以很快地告诉一个球迷从1947年开始NBA圣诞节特别节目开始,他喜欢的球队多少次出现在圣诞节比赛中。解说员经常会说“第三节时科比和奥尼尔合起来得分超过55分,湖人队没有输过”之类的话语,一边说一边可能感谢万能的大数据。
大数据指导训练
联赛水平的根基在于日常训练,这一点大家应该没有什么疑义。但这一切没有在大数据时,训练更多地是从精神层面来要求,比如“女排精神”“三从一大”(从难、从严、从实战出发,大运动量),这种口号好提但是具体怎么做却无从下手。
当年流行于中国的12分钟体测,之前一直说是提高运动员的体能,到最后足协官员也承认“无氧耐力法测试的是一种精神力量”。
正是由于训练中长期缺乏数据,尤其是大数据的指导,才会只沦落到精神层面为主导。现在训练中应用大数据的例子,在足球发达国家例子已经很多了,而这两年中超的球队也在注重训练中大数据的使用,广州恒大、山东鲁能、江苏舜天等等。
新浪体育是这么介绍,山东鲁能采用的GPSports系统:
这套高科技系统对队员们在训练中的心率、速度,距离,加速度和减速度等指标进行记录、分析和监控,监控队员的训练量是否达到或超过相应的指标,同时,也能预防队员在训练中出现的伤病。通过科学的训练方法,对队员们训练提高和预防伤病起到很大的作用。
不知道当年被称为“亚洲第一前锋”的郝海东,足协体测困难户,多次面临拿不到上岗证的他,现在了解到这种基于大数据的训练方法会作何感想?
中超的球队普遍是今年刚用上这些设备,可能还没有来得及享受到大数据的好处,英超球队埃弗顿、英格兰主力鲁尼的老东家这个方面有发言权,他们是这么评价大数据的作用:
我们用GPS和心率测量仪来监测每个球员的状态。从体能的角度来说,最显著的数据是冲刺数量、冲刺距离和每个球员投入的高强度运动次数。我们这样监测一整个赛季下来,就能知道一个球员目前状态是否疲劳,以及他需要多久的休息时间。
大数据分析速滑的诀窍
说完了团体运动的足球,再来看看更侧重于个人的速度滑冰,虽然它不是那么的职业化,但是这种更强调个人技巧的运动,大数据对其的作用更大。
2010年,4年前的温哥华冬奥会,前4项比赛,韩国速度滑冰运动员获得2金1银的优异表现,要知道这是在堪称“短道速滑之国”的国家在温哥华大道赛场上所取得的,其中的秘诀何在?
之后,人们从数据方面分析,发现韩国队的拐弯时候,速度比其他国家的要快。通过这个大数据的分析,再结合慢镜头,人们发现了韩国队的先进技术:在过弯时,通过身体重点心转移,步点的转换,达到一个不减速的效果,甚至还可以加速。
就是凭借这个先进技术,一时间在温哥华的赛场刮起“韩流”。
大数据已经很大程度上影响到职业体育的水平,另一方面,对于职业体育来说,所从事的运动不同对于大数据有不同的应用需求,例如,足球和篮球所遇到的大数据问题是不一样的,团体与个人的运动又会是大不同。海量数据处理的复杂性,对数据中心的计算能力提出了挑战,英特尔就正利用自己在计算领域长久的积累,从支撑计算的芯片产品,到实现分析的解决方案,在职业体育上发挥着不可替代的作用。 好教练难求,但是经过计算和处理的多维度的数据却是可以普及和借鉴的。大数据改变职业体育,并赋予职业体育全新的商业价值,并非一件遥不可及的事。
当然大数据也有其局限性,埃弗顿主教练马丁内斯和他的球探里弗斯和布朗都认为“光凭数据就能买进某个球员”这种想法是十分荒谬的,博尔顿的分析研究总监布莱恩·普莱斯迪奇甚至举出了一个反例:自从他们的守门员开始研究对方的点球手的数据以后,他的扑点球效率反而降低了,过去两个赛季只有9%的成功率。
职业体育与大数据结合,确实对职业体育影响很大,也得出了很多有用的结论,但通过大数据彻底影响比赛结果,目前可能性不大,体育运动,其最大的魅力恰恰在于不可完全预测的下一秒。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01