京公网安备 11010802034615号
经营许可证编号:京B2-20210330
从2014中国产业链大数据报告,看企业未来(3)_数据分析师
四、产业链大数据的未来及方向
1、产业链大数据的未来价值分析
全球大数据市场规模将在未来五年内迎来高达26%的年复合增长率——从今年的148.7亿美元增长到2018年的463.4亿美元。全球各大公司、企业和研究机构对大数据商业模式进行了广泛地探索和尝试,因此大数据在所有眼中的未来价值都非常值得期待。我认为产业链大数据未来的价值主要体现在以下6个方面:
产业链大数据对管理的改变:大数据能进一步提高算法和机器分析的作用。一些制造商利用算法来分析来自生产线的传感数据,创建自动调节过程以减少损失,避免成本高昂的人工干预,最终增加产出。
产业链数据的高透明化和广泛可获取性:一些制造商正试图集成多种系统的数据,甚至从外部供应商和客户处获取数据来共同制造产品。以汽车这类先进制造行业为例,全球供应商生产着成千上万的部件。集成度更高的平台将使公司及其供应链合作伙伴在设计阶段就开始协作。
产业链大数据提高决策准确性:大数据可能使决策制定发生根本性的改变。利用可控实验,公司可验证假设、分析结果以指导投资决策及运作改变。
产业链大数据改变用户的体验:面向用户的企业已长期利用数据来细分和定位用户。大数据实现了用户定制的质的飞跃,使得实时个性化成为可能。下一代零售商通过互联网点击流可跟踪个体用户的行为,更新其偏爱,并实时模仿其可能的行为。
帮组企业建立基于数据的产业链商业模型:产业链大数据催生了新类型的公司,其能建立由信息驱动的商业模型。许多公司都在价值链中发挥中间作用,通过商业交易创建极具价值的“排出数据”。如一家运输公司收集了大量的全球产品出货信息,并专门建立一个部门负责向经济预测方销售数据。
产业链大数据对于企业人才计划的正面影响:人才对于企业而言很重要,企业的很大部分资源都存在于员工的大脑中,如企业人脉关系,方法理论,经验传承,而在大数据时代,人才的这种核心竞争力正在发生异化,数据成为了企业最为重视的核心资产。员工的大脑不再是企业信息资源的核心载体,而是各种可随时调用的数据,企业的所有信息,事无巨细都可以通过各种录入终端形成数据的形式进行存储,然后通过有效的数据管理模型进行分析,导出。
2、产业链大数据的发展方向
产业链大数据的发展依附于大数据整体的技术发展方向,产业链大数据将也会以数据资源、云端结合、理论突破等方向发展。
产业链大数据的资源化:是指大数据成为企业和社会关注的重要战略资源,并已成为大家争相抢夺的新焦点。因而,企业必须要提前制定大数据营销战略计划,抢占市场先机。
产业链大数据与云计算的深度结合:产业链大数据离不开云处理,云处理为大数据提供了弹性可拓展的基础设备,是产生大数据的平台之一。自2013年开始,大数据技术已开始和云计算技术紧密结合,预计未来两者关系将更为密切。除此之外,物联网、移动互联网等新兴计算形态,也将一齐助力大数据革命,让大数据营销发挥出更大的影响力。
产业链大数据科学和理论的提升:未来,大数据科学将成为一门专门的学科,被越来越多的人所认知。各大高校将设立专门的数据科学类专业,也会催生一批与之相关的新的就业岗位。与此同时,基于数据这个基础平台,也将建立起跨领域的数据共享平台,之后,数据共享将扩展到企业层面,并且成为未来产业的核心一环。随着产业链大数据的快速发展,就像计算机和互联网一样,产业链大数据很有可能是新一轮的技术革命。
五、结束语
产业链大数据作为一种重要的战略资产,已经不同程度地渗透到每个行业领域和部门,其深度应用不仅有助于企业经营活动,还有利于推动国民经济发展。它对于推动信息产业创新、改变经济社会管理面貌等方面也意义重大。
现在,通过数据的力量,用户希望掌握真正的便捷信息,从而让生活更有趣。对于企业来说,如何从海量产业链数据中挖掘出可以有效利用的部分,并且用于品牌营销,才是企业制胜的法宝。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22