京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代的企业:数据驱动业务是关键_数据分析师
近几年来,随着互联网、云计算、物联网等信息技术的迅猛发展,一种新的技术革命浪潮正以一种势不可挡的姿态席卷全球,并悄然改变着公共决策、企业管理、市场营销以及生活的方方面面,成为一种全新的颠覆性技术变革,这便是当前最为炙手可热的话题——大数据。
所谓的“大数据”有两个方面的内涵——海量和非结构化,其特性被归纳为4个V,即Volume,Variety,Value,Velocity,分别对应:数据体量巨大;数据类型繁多;数据本身有潜在的价值,但价值比较分散;数据高速产生,需高速处理。
据统计,从人类文明开始到2003年,人类共创造了5TB(兆亿字节)的信息。而现在,这样的数据量却仅需两天就能够被创造出来,且速度仍在加快。2011年,全球创建和复制的数据总量达到1.8ZB (1ZB等于10的21次方比特),相当于全球每人产生300GB以上的数据;预计2020年,全球产生的数据量将超过80ZB。毋庸置疑,现代信息社会已经进入大数据时代。
当数以亿计的数据可以在虚拟的空间中自由穿梭时,当各种数据的获取变得瞬间即达时,大数据对政府、对企业、乃至对个人,都产生了深远的影响。对于大多数企业来说,大数据是既是机遇也是挑战。一方面,“得数据者得天下”,通过对大量的数据进行科学的分类整理以及分析,能够为企业的外部营销、内部运营和领导层决策等提供强大的数据支撑,不断提升企业运营效率,提升企业管理水平。可以说,利用互联网与物联网等带来的海量数据,通过挖掘、分析与业务应用,企业可以在激烈的市场竞争中赢得优势。
另外一个方面,海量的数据也给企业进行数据挖掘、分析带来巨大的挑战。如何从纷繁复杂的数据中挖掘出有利于企业发展的信息,并利用好这些信息指导企业运营,对于一个企业来说显得至关重要。“用数据说话”,如何让数据产生真正的价值成为了摆在企业管理者面前不得不跨越的鸿沟。
“大数据”话题的日趋白热化以及对企业管理带来的深远影响,让许多企业管理者更加关注数据带来的业务价值,纷纷想要通过数据分析工具来挖掘数据价值,从而更好地指导企业的发展。然而,在数据挖掘、分析的过程中,一些弊端渐渐流露出来,海量的数据分析起来要耗费非常大的精力,还常常出现错误,得不到想要的分析结果。
“企业由于纷纷想分折其数据, 会发现其数据问题源头在于业务系统分散导致数据分散,不一致及不能关联以及非端到端导致人工输入错误或个人的原因不输入数据。”对此,拥有30年国内外IT项目管理经验的高亚科技有限公司CEO、前花旗银行副总裁罗叶明先生分析道,“当越来越多的企业意识到上述问题时,他们会更加倾向于选择一体化及端到端的业务系统。”
嵌入先进BI技术,数据挖掘一步到位。面对瞬息万变的市场环境,企业必须对海量的数据进行快速的分析,以最快的速度为企业管理者提供有价值的信息,这对数据分析速度有严格的要求。商业智能技术为企业提供快捷数据仓库,与传统数据仓库包含数据库系统开发、数据清理、数据集成及数据挖掘的整个过程不同,该数据仓库简化数据挖掘的步骤,数据挖掘一步到位,不仅最小化数据集成的需要,还提供行业特定的预先集成解决方案,提高数据分析效率,帮助企业更好地应对大数据“大”的挑战。
数据源统一关联,数据分析精准且实用。事实上,对于大数据分析来说,最大的优势便是数据源,从产生开始便是统一关联的。基于“一个设计,一个系统”的理念,在设计之初便是将ERP、 CRM、PM、PMO等功能模块建立在一个统一的平台上,采用统一的数据库来保持数据结构的全面关联与实时同步,克服了传统应用软件在数据实时性、一致性上的不足。这样一来,企业在开展数据分析时获得的数据源便是实时精准的,避免脏数据的出现,提升数据分析的准确性。
大数据时代带来的海量数据需要先进的信息化手段进行分析,这让企业的IT管理面临更加严峻的局势。基于一体化及端到端管理,借助先进的商业智能技术,提升数据分析的准确率及速度,让大数据分析变得又快又准,且易用,帮助企业更好地实现商业价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05