
当谈到阿里巴巴的数据化营运时,我第一个想到的就是「人」,我们花太多时间讨论我们应该要做什么,却很少会反过来想,如果要落实数据化营运首先要从人做起,因此想跟大家分享的祕密是,数据化营运的内功是什么呢?简单来说,就是利用好「混、通、晒(呈现)」这叁大诀窍。
「混」出数据
现在很多数据分析师,在面对专业範围「怎么算回归」、「怎么画函数」的问题游刃有余,在实际工作中却缺乏商业意识。如果数据分析师缺乏商业意识,公司就成了「盲人」,分析师不知道该使用什么逻辑分析数据,而公司的决策层也得不到任何有价值的参考意见。现在绝大多数 CEO 都在抱怨,每天要看一大堆零零散散的数据。造成这种局面的塬因是,数据分析师只是单纯的把数据传递给管理者,却没有向管理者解释,这些呈现使用者行为的数据和能够在商业上产生价值的数据,两者间的内在关係。
CEO 没有多余精力解读页面浏览量(PV)和独立访客(UV)等数据。他们只需要知道数据是否有问题、反映了什么问题、最近有什么新的发现以及需要我们做出什么样的改变。简单来说,具有商业意识的数据分析师,在监测到网站上婴儿车销量增加的情况时,就可以预测到奶粉的销量也会随之上升。而且,也只有具备商业敏感的数据分析师,才懂得用什么数据驱动公司实现经营目标。
数据分析师如何才能拥有商业敏感?要靠「混」。例如:我要求数据分析师在给我的週报裡,一定要讲到业务方的动态。而且,我给他们的考评标準是,千万不要让我看见业务方发过来的週报裡有的内容,你的週报裡没有。我认为,要实现这一要求最基础的出发点是,数据分析师一定要跟业务方沟通,才有可能服务于他们。
打「通」混的数据
当你与业务人员混得够熟时,在看到某些数据后,你自然就会明白,「喔,这个数据跟商业决策绝对有莫大的关係。」当前,各电商公司在评估公司经营状况时,愈来愈依赖数据。但是,在今天,很少有电商敢完全肯定的说,自己掌握了呈现公司状况较完整的数据。对于公司主管而言,一是因为很多电商在开始收集数据时,会发现数据非常散乱,分布在不同的数据收集管道和营运人员——公司的核心员工手裡,这就使得数据流程非常「堵」;另一个问题是,绝大多数电商缺乏大数据营运的经验,只是收集了很「散」的数据,却不知道如何利用,也不知道该让哪些数据关联起来。
从客观角度来看,数据营运的各方面都可能存在影响数据精準度的「噪音」。数据本身是客观的,但它很容易受到产品和营运人员的影响——产品目的会影响营运人员的想法,营运人员的想法则会影响样本获取的精準度,造成数据在不同人眼中出现不同结果的情形。以转换率为例,市场部门和营运部门对转换率的想法并不相同,如果公司内部的数据标準没有打通、一致,公司决策时被数据迷惑和误导的可能性就会被放大。
因此你会发现,问题最后还是要归结到人和公司。如果不能「通」到商业环境裡,即使数据很多也没有任何价值。坚持带着业务问题观察数据或者带着数据观察业务,兼备二者的敏感,就是做到了「通」。有些人在很短的时间裡就能判断出数据是否有价值,就是因为「混通」了。
想做到数据的积累和沉淀,想要打通数据,建立合理的系统是不二之选。首先,做好数据安全工作,以保证公司内部不同职位的员工可以察看不同的数据;再者,统一不同部门的数据标準,使公司内部数据有统一的介面,避免混乱;最后,关联不同部门的数据,创造机会让数据的营运可以扩散至数据部门之外。「通」是「混、通、晒」裡最关键的连接点。以前,数据量没这么大的时候,公司「混」完就「晒」了,完全凭藉商业敏感营运数据。而现在海量数据成为主流,「通」也就成为了营运数据不可或缺的一部分。
「晒」出混和通的数据
「晒」(呈现)是一种在「混」和「通」基础上,产生出来的最终数据表现,是基于人、商业和数据结合后的一种看数据和用数据的方法论。在「晒」数据层面上,通常是透过数据回答这几个问题:业务好或不好,数据如何改变可以让业务更好,如何利用数据说明业务发现机会,甚至产生出新的商业价值。这些问题看起来是递进关係,其实不然,因为具体应该用数据解决什么问题,要根据业务的情境做决定。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23