
当谈到阿里巴巴的数据化营运时,我第一个想到的就是「人」,我们花太多时间讨论我们应该要做什么,却很少会反过来想,如果要落实数据化营运首先要从人做起,因此想跟大家分享的祕密是,数据化营运的内功是什么呢?简单来说,就是利用好「混、通、晒(呈现)」这叁大诀窍。
「混」出数据
现在很多数据分析师,在面对专业範围「怎么算回归」、「怎么画函数」的问题游刃有余,在实际工作中却缺乏商业意识。如果数据分析师缺乏商业意识,公司就成了「盲人」,分析师不知道该使用什么逻辑分析数据,而公司的决策层也得不到任何有价值的参考意见。现在绝大多数 CEO 都在抱怨,每天要看一大堆零零散散的数据。造成这种局面的塬因是,数据分析师只是单纯的把数据传递给管理者,却没有向管理者解释,这些呈现使用者行为的数据和能够在商业上产生价值的数据,两者间的内在关係。
CEO 没有多余精力解读页面浏览量(PV)和独立访客(UV)等数据。他们只需要知道数据是否有问题、反映了什么问题、最近有什么新的发现以及需要我们做出什么样的改变。简单来说,具有商业意识的数据分析师,在监测到网站上婴儿车销量增加的情况时,就可以预测到奶粉的销量也会随之上升。而且,也只有具备商业敏感的数据分析师,才懂得用什么数据驱动公司实现经营目标。
数据分析师如何才能拥有商业敏感?要靠「混」。例如:我要求数据分析师在给我的週报裡,一定要讲到业务方的动态。而且,我给他们的考评标準是,千万不要让我看见业务方发过来的週报裡有的内容,你的週报裡没有。我认为,要实现这一要求最基础的出发点是,数据分析师一定要跟业务方沟通,才有可能服务于他们。
打「通」混的数据
当你与业务人员混得够熟时,在看到某些数据后,你自然就会明白,「喔,这个数据跟商业决策绝对有莫大的关係。」当前,各电商公司在评估公司经营状况时,愈来愈依赖数据。但是,在今天,很少有电商敢完全肯定的说,自己掌握了呈现公司状况较完整的数据。对于公司主管而言,一是因为很多电商在开始收集数据时,会发现数据非常散乱,分布在不同的数据收集管道和营运人员——公司的核心员工手裡,这就使得数据流程非常「堵」;另一个问题是,绝大多数电商缺乏大数据营运的经验,只是收集了很「散」的数据,却不知道如何利用,也不知道该让哪些数据关联起来。
从客观角度来看,数据营运的各方面都可能存在影响数据精準度的「噪音」。数据本身是客观的,但它很容易受到产品和营运人员的影响——产品目的会影响营运人员的想法,营运人员的想法则会影响样本获取的精準度,造成数据在不同人眼中出现不同结果的情形。以转换率为例,市场部门和营运部门对转换率的想法并不相同,如果公司内部的数据标準没有打通、一致,公司决策时被数据迷惑和误导的可能性就会被放大。
因此你会发现,问题最后还是要归结到人和公司。如果不能「通」到商业环境裡,即使数据很多也没有任何价值。坚持带着业务问题观察数据或者带着数据观察业务,兼备二者的敏感,就是做到了「通」。有些人在很短的时间裡就能判断出数据是否有价值,就是因为「混通」了。
想做到数据的积累和沉淀,想要打通数据,建立合理的系统是不二之选。首先,做好数据安全工作,以保证公司内部不同职位的员工可以察看不同的数据;再者,统一不同部门的数据标準,使公司内部数据有统一的介面,避免混乱;最后,关联不同部门的数据,创造机会让数据的营运可以扩散至数据部门之外。「通」是「混、通、晒」裡最关键的连接点。以前,数据量没这么大的时候,公司「混」完就「晒」了,完全凭藉商业敏感营运数据。而现在海量数据成为主流,「通」也就成为了营运数据不可或缺的一部分。
「晒」出混和通的数据
「晒」(呈现)是一种在「混」和「通」基础上,产生出来的最终数据表现,是基于人、商业和数据结合后的一种看数据和用数据的方法论。在「晒」数据层面上,通常是透过数据回答这几个问题:业务好或不好,数据如何改变可以让业务更好,如何利用数据说明业务发现机会,甚至产生出新的商业价值。这些问题看起来是递进关係,其实不然,因为具体应该用数据解决什么问题,要根据业务的情境做决定。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为银行精准 ...
2025-07-02探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26