京公网安备 11010802034615号
经营许可证编号:京B2-20210330
想必有很多 unwire.hk 的读者 Facebook 中有收到甚么年度回顾的名册吧,此功能让 FB 遭来许多用户炮轰!塬因是 Facebook 勾起用户的伤心事,表面上一则很易懂的新闻,但其背后藏有现今网络生态败坏前奏
步向电脑统冶
造成这次的炮轰,是因为大数据而起。其实这几年人们一直在说大数据的好处,例如早前活用大数据去预测世界盃亦引来全城热话。不过这一切的背后让天恩觉得现时的 internet ,也许是人类被科技统治的前奏,就算肉体上不是,精神上已被慢慢被入侵。以大数据为例,其实有两个部份,一是资料收集,二是分析。不过现时经常听到的是,如何比以往更能有效收集数据,例如 Google 从你 email 、 youtube、 plus 你每个点击及所写的文字去分析你的兴趣,然后派发你会感兴趣的广告。
成功必需配合人脑
其实要有一个成功準确预测的大数据,必需要加有一颗有智慧及经验丰富的人脑作分析。例如大数据预测这隻马今场胜利率有几多,很多时敌不过董标一句:「喂呢隻马今日睇佢呢,有d冷震喎唔係几妥」来得準确。天恩想说的是,发觉现今的 Internet 中开始慢慢抽离「人性」这个因子,一切都要依靠电脑分析去取代人类的智慧,可悲的是人类自己亦同时加入成为杀成自己的帮兇。
欠人性的计算会驱走良币
以 Facebook 为例,到底他们如何决定,那些是这年的重点事件呢 ?就是透过朋友的点击率及回应数目而决定,不过这一切的计算是不能分析到是那是件伤心或开心的事,这就是欠缺人性分析的后果。unwire.hk 的读者可能会觉得这是冰山一角,如果按数据比例上看是没错的,但如果从情感上看,你不会知道那件事被提起对用户的伤害程度有多深,带来甚么蝴蝶效应,这亦是一个单看数据不顾人性的后果。
数据派是不会理会这些在 percentage 上店少数的一群,他们会拿着这些所谓的大数据找商机赚钱,究竟「多人」的偏好是否等于好呢 ?多 Like 是否等于那是件好事 ?
天恩打个比较极端的例子, 数据显示开葯房最赚钱,社会上是否就全人类开葯房就是正确对社会最大贡献。
以前我们做生意,自己想些好点子去吸引客户,再靠口卑慢慢宣传做大,各有特式百花齐放,这才是健康的生态
现在模式是完全倒转过来,人们不再是「创业」而是「抄业」,一味看数据看金钱,贪图近利,活于数据及金钱下的奴隶。
数据是以往的经验累积, 当初 steve job 选择不相信没有人愿意付 500 美金一台智能电话的话的数据调查, iPhone 才会出现,但可惜他过份相信自己所谓 「3.5 寸是最好的手机尺寸」的统计数据,Samsung Galaxy Note 系列不会抬出头开来。
胡乱依赖大数据会造成恶性遁环 ,一些有心有的 idea 的产品可能因为这些错误理解大数据而胎死腹中。
一起结合才会进步
最后 unwire 的读者可能会觉得,其实是 FB 的分析 Model 不够聪明,如果可以加入一件关键字,例如"死了、哭、伤心.." 不就行了吗 ? 这只是比较进步的演算分析,亦不是完美。好像对刚失恋的朋友来说, FB 又再度提起年头时,一堆朋友祝福你跟旧情人的合照有多甜蜜,那又如何有方程式去分析呢 ?
要机器去分析人类实在是太复杂。亦可能 FB 团队太过「纯真」,以为人类主动分享的都是一些开心的事,错了。其实在网络世界中,有研究指出一些过于孤独的人,会经常利用 FB 分享自己伤心事,因为伤心事最容易得到朋友的关心及慰问,最感温暖。
大数据只是一个工具,各位 unwire 读者要紧记,必需要有一个好「用家」分析活动这些数据才能运行,大数据并不是一个「指引」,我们做事是要去创造一条新路出来,而不是去盲从数据。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07