
如何拥抱大数据时代(1)_数据分析师
中国拥有数据资源优势
记者:对于老百姓而言,大数据还是个新词汇,能否介绍一下大数据产生的时代背景以及目前国内外研究、应用的状况?
袁卫:在上世纪80年代初,就已经有了大数据的概念和相关应用,但是它深入社会和百姓的视野,则是最近几年的事情。2012年,美国政府由白宫牵头,启动了一个“大数据发展计划”,这个计划的推出被视为进入大数据时代的标志性事件,其重要性堪比1992年美国政府推出的“信息高速公路计划”(被视为进入网络时代的标志)。在相似的时间,欧盟各国陆续开放了很多政府数据,日本也启动了一个大数据项目,联合国2012年发布大数据报告,全球掀起了大数据研究和应用的热潮。
大数据的发展,是以网络和计算机技术的高速发展为依托的。1965年英特尔创始人之一的摩尔先生提出,未来的网络计算机发展,大体上每隔1年到2年,等面积集成电路中的晶体管数量将会增加一倍,即计算速度会提高一倍,同等的计算,成本会降低一半。经过近50年的实践,验证了摩尔先生的预测,也就是人们常说的“摩尔定律”。计算机和网络科技的高速发展,使得大量网络数据,包括音频的、视频的、图片的、文本的各种各样的数据,得以保存,并转化为我们可以深入分析的数据。于是,大数据的研究和应用也就水到渠成了。
记者:在大数据这个领域,我们和发达国家的差距大吗?
袁卫:上世纪八九十年代,我们在很多科技领域和国外差距很大,但是进入互联网时代以后,这种状况逐渐改观。进入大数据时代,我们可进一步缩小与美国等科技发达国家的差距,甚至具有后发优势,原因有三个方面:其一,在互联网时代,各种最先进的技术可以快速传播,基本上可以做到全球同步;其二,和微软的操作系统等软件不同,大数据绝大多数软件是开源的,很多网络技术也是公开的,中国的科学技术与教育工作者,只要具有足够的智慧和能力,完全可以追赶甚至在某个领域超过美国;其三,我们在数据资源上具有优势。中国有13.5亿人,13.5亿个活动主体组织了各种社会经济关系,建立起各种社会、网络联系,在各种社会经济活动中产生大量的数据,这些数据是可以充分挖掘的资源。我们起步稍晚,但是具有后发优势,在某些领域甚至可以达到国际先进水平,比如中国推进的智慧城市建设就很不错,还有微信社交平台、阿里小贷等,体现了中国的特色。
统计学科迎来“最好的时期”
记者:您是统计学方面的权威专家。在您看来,大数据对于统计学的发展有何影响?
袁卫:统计学就是数据科学,大数据对统计学的发展影响巨大。我个人认为,大数据对于统计学的发展,既是机遇又是挑战。
说它是机遇,是因为大数据研究和应用会带来大量人才需求,这对统计学的发展是一个巨大的利好,可以说,目前统计学发展正处于历史上最好的时期。这几年,从全国范围看,统计学专业毕业生就业状况都不错,今后会更好。
说它是挑战,是因为大数据可能部分颠覆传统的统计方法。比如有人认为,传统的统计方法讲究抽样,但是大数据使得我们可以对接近总量的数据进行分析,这样进行抽样调查的需求就会减少;还有人认为,传统的统计分析注重因果关系,但大数据情况下,只需明确两者之间有关系即可。另外,过去强调分析的准确性,而在大数据情况下,允许存在一定的误差,等等。
我认为,大数据对统计学带来的上述挑战确实存在,但是不会导致传统抽样调查的需求减少。因为大数据虽然数据量很大,但绝大多数情况下这些大样本都不是随机的,推断总体都有系统偏差,因而抽样调查等统计方法仍然是不可取代的。此外,在很多时候,科研和商业应用、科学决策还是需要进行准确的统计分析的。
从人才培养的角度看,统计学在教学内容、教学方法、人才培养模式等方面需要进行变革,以适应大数据时代的人才素质要求,这是统计学科发展面临的另一挑战。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01