京公网安备 11010802034615号
经营许可证编号:京B2-20210330
如何拥抱大数据时代(1)_数据分析师
中国拥有数据资源优势
记者:对于老百姓而言,大数据还是个新词汇,能否介绍一下大数据产生的时代背景以及目前国内外研究、应用的状况?
袁卫:在上世纪80年代初,就已经有了大数据的概念和相关应用,但是它深入社会和百姓的视野,则是最近几年的事情。2012年,美国政府由白宫牵头,启动了一个“大数据发展计划”,这个计划的推出被视为进入大数据时代的标志性事件,其重要性堪比1992年美国政府推出的“信息高速公路计划”(被视为进入网络时代的标志)。在相似的时间,欧盟各国陆续开放了很多政府数据,日本也启动了一个大数据项目,联合国2012年发布大数据报告,全球掀起了大数据研究和应用的热潮。
大数据的发展,是以网络和计算机技术的高速发展为依托的。1965年英特尔创始人之一的摩尔先生提出,未来的网络计算机发展,大体上每隔1年到2年,等面积集成电路中的晶体管数量将会增加一倍,即计算速度会提高一倍,同等的计算,成本会降低一半。经过近50年的实践,验证了摩尔先生的预测,也就是人们常说的“摩尔定律”。计算机和网络科技的高速发展,使得大量网络数据,包括音频的、视频的、图片的、文本的各种各样的数据,得以保存,并转化为我们可以深入分析的数据。于是,大数据的研究和应用也就水到渠成了。
记者:在大数据这个领域,我们和发达国家的差距大吗?
袁卫:上世纪八九十年代,我们在很多科技领域和国外差距很大,但是进入互联网时代以后,这种状况逐渐改观。进入大数据时代,我们可进一步缩小与美国等科技发达国家的差距,甚至具有后发优势,原因有三个方面:其一,在互联网时代,各种最先进的技术可以快速传播,基本上可以做到全球同步;其二,和微软的操作系统等软件不同,大数据绝大多数软件是开源的,很多网络技术也是公开的,中国的科学技术与教育工作者,只要具有足够的智慧和能力,完全可以追赶甚至在某个领域超过美国;其三,我们在数据资源上具有优势。中国有13.5亿人,13.5亿个活动主体组织了各种社会经济关系,建立起各种社会、网络联系,在各种社会经济活动中产生大量的数据,这些数据是可以充分挖掘的资源。我们起步稍晚,但是具有后发优势,在某些领域甚至可以达到国际先进水平,比如中国推进的智慧城市建设就很不错,还有微信社交平台、阿里小贷等,体现了中国的特色。
统计学科迎来“最好的时期”
记者:您是统计学方面的权威专家。在您看来,大数据对于统计学的发展有何影响?
袁卫:统计学就是数据科学,大数据对统计学的发展影响巨大。我个人认为,大数据对于统计学的发展,既是机遇又是挑战。
说它是机遇,是因为大数据研究和应用会带来大量人才需求,这对统计学的发展是一个巨大的利好,可以说,目前统计学发展正处于历史上最好的时期。这几年,从全国范围看,统计学专业毕业生就业状况都不错,今后会更好。
说它是挑战,是因为大数据可能部分颠覆传统的统计方法。比如有人认为,传统的统计方法讲究抽样,但是大数据使得我们可以对接近总量的数据进行分析,这样进行抽样调查的需求就会减少;还有人认为,传统的统计分析注重因果关系,但大数据情况下,只需明确两者之间有关系即可。另外,过去强调分析的准确性,而在大数据情况下,允许存在一定的误差,等等。
我认为,大数据对统计学带来的上述挑战确实存在,但是不会导致传统抽样调查的需求减少。因为大数据虽然数据量很大,但绝大多数情况下这些大样本都不是随机的,推断总体都有系统偏差,因而抽样调查等统计方法仍然是不可取代的。此外,在很多时候,科研和商业应用、科学决策还是需要进行准确的统计分析的。
从人才培养的角度看,统计学在教学内容、教学方法、人才培养模式等方面需要进行变革,以适应大数据时代的人才素质要求,这是统计学科发展面临的另一挑战。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17