
“大数据”如何打造“全民电影”(2)_数据分析师
百度商业分析部总监李忠军表示,从用户思维出发,让用户心声得以表达,并参与产品的开发,离不开便捷的数据收集、获取,以及基于大数据能力的数据挖掘和分析,百度的数据积累为全民表达和参与提供了坚实的基础。
《全民电影》项目是百度娱乐影视大数据史上最大的一次实战运用,选角模型和营销指导是核心。百度大数据将从多个维度支持《全民电影》项目,以《全民电影》总导师吴宇森举例,吴宇森导演拍部新片怎么确保选择出演的明星一定卖座?基于百度风云榜和百度指数的数据分析,百度会对明星的关注度及曝光活跃度进行客观“打分”,导演团队可以很清晰地看出每位演员的各项指数,如更受哪一地区、哪一年龄层、哪一类型影迷群体的关注,通过了解备选明星以往的商业价值和特质,以及正负面舆情监测等,吴宇森导演还可以评估其营销价值。
高宏刚表示,随着移动终端信息处理能力的提升,每个人的移动终端实际上就变成了一个数据记录仪。它比笔记本电脑所能获取到的信息更加个人化,不仅暴露这个人的生活细节,位置动向,同时也记录着他的消费习惯,人类第一次拥有了这么多数据的生产者。未来的市场都是由一个个用户构成,在一个项目运行之初无论是他的全媒体概念还是用户概念,都会和大数据统计结合在一起。《全民电影》在客观数据指导下,会少走弯路,赢得更多用户的喜欢,获得更大的市场。除了选演员,票房投资回报也是导演和投资人关心的话题,百度娱乐影视大数据可以对主创团队历史投资回报表现进行分析,预估人员对票房的贡献力,同时将影迷数据与潜在市场做匹配,来指导市场排片,预测契合度、优化营销活动。
创作者把握受众注意力走向
大数据将电影带往何方?
在未来,大数据具体到一个电影项目里,会提供哪些数据支撑或者决策服务呢?百度相关技术负责人表示:从目前来看,总的来说,大数据技术可以挖掘数据背后的真实含义,更精准地还原群体的面貌并时刻把握网民注意力的走向。可以说,数据对市场精准专业的洞察,可以为一部电视剧的全制作过程提供决策支持,其中包括剧本创作、主创组队、营销分发、收视监测。例如电影《小时代》利用大数据,精准地对观众群体进行分析,它关注了9万用户的新浪微博,对微博使用人群进行深入分析。调查数据显示,在9万微博用户中,81%是女性,19%是男性;平均年龄20岁左右,喜欢看《快乐大本营》《非诚勿扰》等电视节目。而这也正是适合《小时代》的受众群体。
从大数据技术介入影视业那天起,大众便对数据的预测分析能力有了超高的期待,同时对数据预测应用也有争议,比如隐私、安全等话题。针对这些问题,该负责人解释:这里需要探讨的是预测分析的原理以及合理利用。
首先,“数据挖掘”,预测分析是“提炼”信息,是一种归纳总结的分析,试图从海量信息中找出普遍适用的规则。所以从这个角度理解预测分析,它只是一种对客观事实的归纳和演绎。
其次,预测分析无法做到预测系统性的危机,主要就是大家熟悉的“黑天鹅事件”。就是指非常难以预测,且不寻常的事件,通常会引起市场连锁负面反应甚至颠覆。在预测微观层面的趋势时,技术通过对个体的变量做分析,但是分析结果很难精确地随着宏观环境的变化、突发事件的爆发而变化。
第三,数据的价值、力量和意义让数据变得敏感。这种冲突随着数据力量的强大和数据生态的完整而愈发强烈,并且还会持续。数据技术是中性的,让技术带上利弊评价的往往不是“人们看到了什么样的信息”而是“利用信息做了什么”。在建立“公平”和“正确”的数据规则上,显然需要更多探索。但是目前数据应用基本都是为了更好地服务于这个目标。
在预测分析技术成熟的道路上,大数据可以对一部电影提供深度数据分析与策略规划支持,可以在一定程度上评估风险、规避风险。但是,数据只能显示目前大多数人的态度和选择,并不能预测未来人们会喜欢什么,也就不能提供更好的创意。从这一角度来看,基于数据技术打造的电影,更有可能只是一部“差不多”电影。至于它能否创造经典,能否给电影的品质带来革命性的未来,我们拭目以待。
链接
什么是大数据?
大数据,或称巨量资料(bigdata)、海量资料,指的是由数量巨大、结构复杂、类型众多数据构成的数据集合,是基于云计算的数据处理与应用模式,通过数据的整合共享、交叉复用,形成智力资源和知识服务能力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23