
大数据与中国的战略选择(2)_数据分析师
国际竞争延伸至赛博空间(Cyberspace)。领土、领海、领空这三大领域是传统国际竞争的焦点。随着大数据时代的到来,更重要的竞争领域开始凸显——赛博空间(赛博空间是哲学和计算机领域中的一个抽象概念,指在计算机以及计算机网络里的虚拟现实,有的文献译作网络电磁空间,有的误译为网络空间)。美国2014财年预算提出增加赛博安全防御经费,奥巴马政府希望通过给予研究人员更多资金和资源,使美国能够在当前的全球赛博军备竞赛中开展竞争。
大数据成为关键生产要素。随着大数据时代的到来,数据将如能源、材料一样,成为战略性资源。2012年3月,奥巴马政府在白宫网站发布了《大数据研究和发展倡议》,将其视为“未来的新石油”,提出通过大数据加速在科学、工程领域的创新步伐,强化美国国土安全,转变教育和学习模式。如何利用数据资源发掘知识、提升效益、促进创新,使其服务于国家治理、企业决策乃至个人生活服务,是大数据时代的重要战略课题。
中国的战略选择
扩大人才供给。政府应采取多种措施,扩大大数据相关人才供给。实施教育培养计划,在大学相应阶段有针对性地增加相关课程,增加学生在感知技术、数据仓库、数据搜索、数据挖掘与可视化等领域的知识积累,扩大人才储备规模。加大从其他国家、地区引进人才的力度,实施各项优惠政策、营造良好发展环境以吸引国外优秀的技术人员,增强我国相应研发实力。采取相应激励措施,鼓励企业对管理者普及数据分析技术培训,推动企业使用相关技术明确消费需求、创新产品及服务。
支持企业研发。产业安全是国家安全的基石,产业安全依赖企业实力,尤其是企业的研发能力。在明确关键技术的基础上,确定重点支持领域,加大研发支持力度,整合云计算专项、物联网专项等项目,支持大数据技术的开发、研究和应用示范,引导企业加大研发力度,实现关键技术突破。在政府部门和公用事业的信息化应用中采购大数据技术,以政府采购引导国内大数据发展。优先支持大数据技术在诸如疾病防治、灾害预测与控制、食品安全与群体事件等民生领域的应用。
加快标准建设。完善知识产权保护体系,促进数据共享和整合,推动数据价值创造。加快制定相关标准和指南,鼓励存在缺口的重要领域推进关键技术研发,推动行业标准制定机构出台各类型的标准,并给予资金支持、税收减免、费用补贴、金融支持等激励措施。
开放政府信息资源。尽快建设信息资源开放平台,促进信息共享与业务协同,努力为群众提供更方便快捷、更优质高效的公共服务,以满足各级政务部门经济调节、市场监管、社会管理、公共服务等方面的需要。根据跨部门协同办公的需要,以部门业务信息为基础,从标准、流程、数据三个方面来设计,形成“物理分散、逻辑集中”的公共数据中心,通过数据集中挖掘,提高数据利用率,提高各级政府行政管理效率和公共服务水平。出台一些配套制度,例如公开数据集的目录,强制要求进行数据公开和共享;设立奖惩制度,对于公开信息及时、可靠的予以奖励,不符合规定的予以惩处;建立预算制度,从预算角度控制各部门经费使用方向,推动数据共享,防止“信息孤岛”现象的出现。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04