京公网安备 11010802034615号
经营许可证编号:京B2-20210330
舆情如何与大数据“共舞”_数据分析师
2013年,大数据这一概念以夺目之势走进了我们的视野,学者在介绍,政府官员在谈论,世界互联网企业则纷纷启动大数据竞争,有媒体将今年称为大数据元年。大数据,正由技术热词变成一股社会浪潮乃至国家战略。
随着互联网技术的迅速发展,信息量大、类型繁多、价值密度低、速度快、时效高的大数据吸引了越来越多的关注目光,大数据带来的信息风暴正在改变我们的生活、工作和思维。毋庸讳言,舆情服务在进行行业规范和整合的同时,正面临着大数据的挑战。
大数据时代,对信息的加工是基础。据互联网专家介绍,大数据体量巨大,非结构化数据的超大规模和增长分别占总数据量的80%至90%,比结构化数据增长快10到50倍。从舆情产品服务的角度看,浓缩海量信息,抵抗数据爆炸已成舆情工作基本要求。故此,掌握数据抓取能力与舆情解读能力,通过加工实现数据的增值,将是未来舆情分析的必备技能。目前,国内很多舆情服务机构甚至没有专门的数据管理、分析部门和专业分析团队,分析人员对信息的鉴别力、萃取力、掌控力仍有待提高。在信息广度上大作文章的同时,未来需要一批有较高学习能力、分析能力、知识水平的数据从业人员占据舆情服务重镇。
大数据时代,对数据的解释是关键。目前,数据的可获得度已经空前提高,我们可以分析更多的数据,有时候甚至可以处理和某个特别现象相关的所有数据,实现真正的大数据挖掘和分析。数据的海量、及时、动态、开放,有利于我们完善分析的效度和深度。同时,大数据也有价值密度低、传播速度快等特点,数据分析的模式是否科学,这将直接影响数据分析的质量。大数据的异构和多样性,需要舆情分析人员对一些危机事件进行高质量的数据解释。基于数据分析,能否提炼出独到、高质量的观点,在凌乱纷繁的数据背后找到更符合客户要求的舆情产品和服务,并进行针对性的调整和优化,这是大数据时代舆情最大的变量。
大数据时代,对趋势的研判是目标。大数据的核心和目标就是预测,具体到舆情服务,舆情工作人员从互联网浩如烟海的数据中挖掘信息、判断趋势、提高效益,虽然获得广泛且实际的应用,但还远远不够。舆情分析人员要不断增强关联舆情信息的分析和预测,把服务的重点从单纯的收集有效数据向对舆情的深入研判拓展,跟踪关联舆情,不再局限于危机解决,还要辅之以决策参考,从注重静态收集向注重动态跟踪拓展,从致力反映问题向致力解决问题拓展,使舆情产品和服务更高、更快、更强(视点高、预警快、处置强)。
大数据时代,分众服务是方向。数据的互通互联,改变了数据库、应用软件和用户界面等系统之间的孤岛状态。舆情服务机构应树立大舆情观念,对数据进行生产、分析和解读,探索一条为用户提供分众化服务的信息增值之路,使舆情服务的主体和边界形成一条完整的舆情闭环。在这个认识基础上,舆情服务机构需把握未来几年大数据在公共及企业管理领域发展的重要方向:横向看,将服务主体延伸至政府、企业和社会的各领域,通过搭建关联领域的数据库、舆情基础数据库等,充分整合政府和企业的数据资产;纵向看,将产品内容延伸至包括舆情抓取、预警到决策、评估等在内的各环节,协助客户丰富和完善决策参考体系。
大舆情,强调大数据的关联性。发展和利用好数据资源,充分反映数据爆发背景下的数据处理与应用需求,这是大数据时代最大的舆情变革。目前,国内经济社会转型发展环境压力加大,社会周期结构性突发舆情因素增多,舆情工作者尤其需要树立前瞻意识,提高媒介素养,加强互联网大数据分析研判,获取情报,抓住机遇,为长远发展打下良好的基础。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28