京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据中心关注大数据的几个价值领域
乍一看,大数据对数据中心的影响就好像是另一款高性能的应用程序,需要更多的处理能力、更多的存储空间、以及更高性能的网络。总之,这似乎是带给了数据中心另一个负担。然而,事实上,大数据不仅仅只是业务分析的工具,其也可以成为帮助改善数据中心的一款有用的工具。
更好的IT安全
IT安全已经成为一般企业的日常管理项目,并成为了IT管理最为关注的一个议题。黑客恶意攻击威胁管理所存在的最大问题之一便是必须调查和识别海量的数据,跟踪潜在的入侵者进入您企业的IT基础设施。
传统上,这方面的对策主要都集中在单个系统上,其中最好的是结合集中监控,以便识别和关联不同的威胁。然而,鉴于企业有着几十乃至数以千计的设备和应用程序,这一方法迅速变得站不住脚,因为所有的设备和应用程序都是潜在的攻击目标。
大数据能够帮助围绕海量数据进行几近实时的处理,即可满足上述的这一要求。任何供应商无论其是经验丰富的老牌企业或是市场新手都能够迅速进入该领域。其带来的好处是显而易见的:无关系统里的两个或三个事件可能会暴露一种微妙的攻击。而利用一个系统可以巩固、分析,并确定这些事件的性质,并防止攻击事件的发生。
大数据的价值
不能一味地否定无用的数据,它们同样蕴含着价值,它们确切的说法应该是低价值密度数据。因此,企业也应该保留这些数据,只是暂时尚未发现它的价值,可以用低成本的存储服务器保留它们。
当人们通过搜索引擎检索时,会出现一些习惯性的拼写错误。这些错误数据虽然表面上没有意义,但通过收集这些数据却可以发现大量的用户习惯和规律。
人们对于海量数据感到困惑,这是因为未能全局掌握整个数据只是看到破碎的、零散的、局部的数据。这就像通常“给数据做提炼总结”而在总结的过程中往往会丢失掉大量细节,但是很多有价值的信息正隐藏在具体的细节当中。
对于不同价值的数据要区分对待,把价值不高的数据存储在低成本的环境当中,但是绝对不会把它丢弃,因为假以时日,它还是会有一定的价值会被挖掘出来。
隐私保护仍待解决
应该对用户隐私提供一定的保护,例如通过数据加密,只让需要知道数据的人了解、接触或者访问到这些数据。他希望大众了解,通常通过数据挖掘软件,实际上看到的用户数据或者信息并不针对某个具体的人。
很多国家的立法机构或者政府希望通过制定隐私保护法律来实现对用户信息的保护。但是,由于对数据分析不了解,有些法规最终可能限制了用户对信息和数据的使用。
容量管理
类似于易趣网这样的企业已经宣布成功地利用大数据分析优化他们的数据中心了。正如虚拟化技术能够帮助调整企业容量的不足,这些方面的工作也可以达到同样的效果。再次,容量管理为大数据带来了几近完美的使用情况:一个单一硬件可能运行多台虚拟机,有多个磁盘映像和无数的应用程序,需要花费几个月的时间来挖掘完全的图像。
这种演进的下一步将“主动”与容量管理分析相结合,使虚拟机可以根据历史和预测的需求及其他指标进行资源调配和实时的重新分配。想象一下,你的数据中心容量智能再分配本身是基于一款新发布的产品或基于季节性需求。虽然这项技术仍处于起步阶段,但其可能会影响到下一代的数据中心。
更好的监测
将这些技术捆绑在一起,是新一代的监控工具,由大数据提供动力。虽然传统的工具也能在故障发生时合理的识别确定,但在许多情况下自动采取纠正措施,大多缺乏广泛的预测能力,依靠用户配置警报阈值和度量。
如果支持大数据主动监测,您企业的数据中心监控工具可以预测在一个数据库服务器中的硬件故障。该工具将智能分配受影响的应用程序到另一台服务器,并通知相关人员,一旦问题被纠正,再进行恢复操作。
甚至安全问题可以被整合到这个“智能”的数据中心,然后隔离被破坏的应用程序或基础设施,正如大多数杀毒软件“隔离”被病毒感染的文件一样。
虽然大数据才刚刚开始影响到数据中心,但这是值得开发的技术,因为它带来了这么多的机会帮助我们保护、修复、优化现代数据中心。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16