京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据中心关注大数据的几个价值领域
乍一看,大数据对数据中心的影响就好像是另一款高性能的应用程序,需要更多的处理能力、更多的存储空间、以及更高性能的网络。总之,这似乎是带给了数据中心另一个负担。然而,事实上,大数据不仅仅只是业务分析的工具,其也可以成为帮助改善数据中心的一款有用的工具。
更好的IT安全
IT安全已经成为一般企业的日常管理项目,并成为了IT管理最为关注的一个议题。黑客恶意攻击威胁管理所存在的最大问题之一便是必须调查和识别海量的数据,跟踪潜在的入侵者进入您企业的IT基础设施。
传统上,这方面的对策主要都集中在单个系统上,其中最好的是结合集中监控,以便识别和关联不同的威胁。然而,鉴于企业有着几十乃至数以千计的设备和应用程序,这一方法迅速变得站不住脚,因为所有的设备和应用程序都是潜在的攻击目标。
大数据能够帮助围绕海量数据进行几近实时的处理,即可满足上述的这一要求。任何供应商无论其是经验丰富的老牌企业或是市场新手都能够迅速进入该领域。其带来的好处是显而易见的:无关系统里的两个或三个事件可能会暴露一种微妙的攻击。而利用一个系统可以巩固、分析,并确定这些事件的性质,并防止攻击事件的发生。
大数据的价值
不能一味地否定无用的数据,它们同样蕴含着价值,它们确切的说法应该是低价值密度数据。因此,企业也应该保留这些数据,只是暂时尚未发现它的价值,可以用低成本的存储服务器保留它们。
当人们通过搜索引擎检索时,会出现一些习惯性的拼写错误。这些错误数据虽然表面上没有意义,但通过收集这些数据却可以发现大量的用户习惯和规律。
人们对于海量数据感到困惑,这是因为未能全局掌握整个数据只是看到破碎的、零散的、局部的数据。这就像通常“给数据做提炼总结”而在总结的过程中往往会丢失掉大量细节,但是很多有价值的信息正隐藏在具体的细节当中。
对于不同价值的数据要区分对待,把价值不高的数据存储在低成本的环境当中,但是绝对不会把它丢弃,因为假以时日,它还是会有一定的价值会被挖掘出来。
隐私保护仍待解决
应该对用户隐私提供一定的保护,例如通过数据加密,只让需要知道数据的人了解、接触或者访问到这些数据。他希望大众了解,通常通过数据挖掘软件,实际上看到的用户数据或者信息并不针对某个具体的人。
很多国家的立法机构或者政府希望通过制定隐私保护法律来实现对用户信息的保护。但是,由于对数据分析不了解,有些法规最终可能限制了用户对信息和数据的使用。
容量管理
类似于易趣网这样的企业已经宣布成功地利用大数据分析优化他们的数据中心了。正如虚拟化技术能够帮助调整企业容量的不足,这些方面的工作也可以达到同样的效果。再次,容量管理为大数据带来了几近完美的使用情况:一个单一硬件可能运行多台虚拟机,有多个磁盘映像和无数的应用程序,需要花费几个月的时间来挖掘完全的图像。
这种演进的下一步将“主动”与容量管理分析相结合,使虚拟机可以根据历史和预测的需求及其他指标进行资源调配和实时的重新分配。想象一下,你的数据中心容量智能再分配本身是基于一款新发布的产品或基于季节性需求。虽然这项技术仍处于起步阶段,但其可能会影响到下一代的数据中心。
更好的监测
将这些技术捆绑在一起,是新一代的监控工具,由大数据提供动力。虽然传统的工具也能在故障发生时合理的识别确定,但在许多情况下自动采取纠正措施,大多缺乏广泛的预测能力,依靠用户配置警报阈值和度量。
如果支持大数据主动监测,您企业的数据中心监控工具可以预测在一个数据库服务器中的硬件故障。该工具将智能分配受影响的应用程序到另一台服务器,并通知相关人员,一旦问题被纠正,再进行恢复操作。
甚至安全问题可以被整合到这个“智能”的数据中心,然后隔离被破坏的应用程序或基础设施,正如大多数杀毒软件“隔离”被病毒感染的文件一样。
虽然大数据才刚刚开始影响到数据中心,但这是值得开发的技术,因为它带来了这么多的机会帮助我们保护、修复、优化现代数据中心。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28