京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据有助于打造优质汽车的三大理由_数据分析师
福布斯》网站近日发表文章,称大数据将有助于汽车行业生产更加优质的汽车,并分析了三大理由。
随着汽车质量的不断提高,全球各种品牌汽车的可靠性和耐用性也得到了巨大提升。据市场研究公司R.L. Polk的数据显示,截至2013年底,公路上每辆汽车的平均使用年龄已经高达11.4年。
如今,使用寿命加长的汽车数量越来越多,与此同时,相应的服务电话数量却越来越少。从前,几乎每辆汽车行驶3000英里就需要更换常规油。据Edmunds.com网站的数据显示,如今,高级的润滑剂和不断升级的引擎意味着汽车能够行驶的里程也增加了三到五倍。
现在,平均每辆新汽车约有2000个左右的功能性机械零件,还配置有大量的软件代码。随着汽车越来越智能,汽车制造商也开始使用软件来对汽车进行更新。通常情况下,车身在汽车生命周期内不需要进行更新,但车载软件却需要定期进行更新,以此确保与环境的连接,或者是确保提高汽车的功能和性能。
从现代汽车内的所有可用的传感器数据来看,汽车几乎已经变成了一个数据工厂。人们看到,快速增长的可用数据量,一旦与现有的制造和研发数据结合起来,就可以为汽车生态系统内的所有公司提供巨大的价值。不幸的是,其中的多数数据目前仍未发挥充分的潜力,只能当作无用的数据存储在一边。
实际上,如果将所有可用的结构化和非结构化数据有机地结合在一起,那么整个汽车行业可能会更好的了解和优化汽车性能,并进一步提升汽车的行驶安全性,或者可以通过先进的汽车驾驶员助手系统来减少事故。总之,大数据对汽车行业的帮助将是无限的,而且汽车行业会因为大数据而出现一些新兴的业务。总体而言,汽车制造商发现问题的速度将快于以往,从而帮助他们更快的实施相对应的政策和措施,从而将坏影响控制在最低范围之内,这样的举措完全可以通过帮助及早确认问题以避免更大损失的数据分析工具来完成。
以下就是大数据将有利于提升汽车质量和削减汽车制造成本的三大理由:
1、有助于设计和制造。在设计图纸到组装再到生产的过程中,设计错误可能会引发高额的成本。设计和工作流程软件能够帮助找到那些在设计图纸阶段就已经出现的漏洞,从而阻止高成本的返工或之后的召回产品等情况发生。
例如,日本方向盘系统供应商捷太格特(JTEKT Corp)公司就执行了一个基于软件的研发流程,这一流程能够仔细追踪设计变化情况。这样就减少了返工及相关成本,提早帮助零售制造商确保产品质量和安全性。对捷太格特公司而言,这种措施能够将产品的研发成本削减10%之多。
2、有助于使用和维护。更好的数据也能够帮助我们日常使用汽车。每天,驾驶员都会例行地享受车载传感器的优点,这种传感器能够监控从刹车到车窗清洗液在内的一切状况,一旦有情况就会及时发出警告信息。及早的警告有助于用户在汽车配件出现严重的损坏之前就对这些零售进行更换,从而减少麻烦和困扰。
大多数大企业都在积极推动这一进程,追踪整个汽车的性能数据,从而帮助更好地维护汽车,最终增加汽车的里程数量,并减少汽车维修费用。一些物流公司和运输公司还将高级的汽车性能监控设备与商用卡车的内置位置传感器进行整合,从而及时地掌握汽车性能情况。
另外,大数据分析还帮助路线规划者通过规划合理的行车路线减少路程数,这种过程不仅减少了汽车的行程,而且也提升了汽车的效率,并将车辆维护费用减少5%。
3、有助于配件升级和汽车重新设计。随着汽车运行方式相关的知识了越来越多地被人了解,工程师们也开始认识到,大数据就是一个有助于设计未来更好汽车的一个重要渠道。
通过挖掘保修数据,大汽车公司能够进行高级的性价比分析。或许,公司可能会撤消那些需要频繁进行维修的低成本零件,并用高价格的配件代替。虽然这可能会增加零件成本,但是这种升级后的零件却能够使用更长的时间,而且还可以避免保修成本,从长期来看,可以帮助公司节省成本。
这种对所有数据进行分析和应用的做法,可能会意味着,将来有一天,我们将能够打造一辆无漏洞的优质汽车,或许也不可能,但无论如何,我们会能够更加接近于这样的目标。通过缩短设计和工程周期、优化能耗方法、减少整个研发成本,汽车公司也将会推出更加创新、更加可靠、更加持久耐用的新模式。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20在商业数据分析领域,“懂理论、会工具”只是入门门槛,真正的核心竞争力在于“实践落地能力”——很多分析师能写出规范的SQL、 ...
2025-11-20在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10