京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据有助于打造优质汽车的三大理由_数据分析师
福布斯》网站近日发表文章,称大数据将有助于汽车行业生产更加优质的汽车,并分析了三大理由。
随着汽车质量的不断提高,全球各种品牌汽车的可靠性和耐用性也得到了巨大提升。据市场研究公司R.L. Polk的数据显示,截至2013年底,公路上每辆汽车的平均使用年龄已经高达11.4年。
如今,使用寿命加长的汽车数量越来越多,与此同时,相应的服务电话数量却越来越少。从前,几乎每辆汽车行驶3000英里就需要更换常规油。据Edmunds.com网站的数据显示,如今,高级的润滑剂和不断升级的引擎意味着汽车能够行驶的里程也增加了三到五倍。
现在,平均每辆新汽车约有2000个左右的功能性机械零件,还配置有大量的软件代码。随着汽车越来越智能,汽车制造商也开始使用软件来对汽车进行更新。通常情况下,车身在汽车生命周期内不需要进行更新,但车载软件却需要定期进行更新,以此确保与环境的连接,或者是确保提高汽车的功能和性能。
从现代汽车内的所有可用的传感器数据来看,汽车几乎已经变成了一个数据工厂。人们看到,快速增长的可用数据量,一旦与现有的制造和研发数据结合起来,就可以为汽车生态系统内的所有公司提供巨大的价值。不幸的是,其中的多数数据目前仍未发挥充分的潜力,只能当作无用的数据存储在一边。
实际上,如果将所有可用的结构化和非结构化数据有机地结合在一起,那么整个汽车行业可能会更好的了解和优化汽车性能,并进一步提升汽车的行驶安全性,或者可以通过先进的汽车驾驶员助手系统来减少事故。总之,大数据对汽车行业的帮助将是无限的,而且汽车行业会因为大数据而出现一些新兴的业务。总体而言,汽车制造商发现问题的速度将快于以往,从而帮助他们更快的实施相对应的政策和措施,从而将坏影响控制在最低范围之内,这样的举措完全可以通过帮助及早确认问题以避免更大损失的数据分析工具来完成。
以下就是大数据将有利于提升汽车质量和削减汽车制造成本的三大理由:
1、有助于设计和制造。在设计图纸到组装再到生产的过程中,设计错误可能会引发高额的成本。设计和工作流程软件能够帮助找到那些在设计图纸阶段就已经出现的漏洞,从而阻止高成本的返工或之后的召回产品等情况发生。
例如,日本方向盘系统供应商捷太格特(JTEKT Corp)公司就执行了一个基于软件的研发流程,这一流程能够仔细追踪设计变化情况。这样就减少了返工及相关成本,提早帮助零售制造商确保产品质量和安全性。对捷太格特公司而言,这种措施能够将产品的研发成本削减10%之多。
2、有助于使用和维护。更好的数据也能够帮助我们日常使用汽车。每天,驾驶员都会例行地享受车载传感器的优点,这种传感器能够监控从刹车到车窗清洗液在内的一切状况,一旦有情况就会及时发出警告信息。及早的警告有助于用户在汽车配件出现严重的损坏之前就对这些零售进行更换,从而减少麻烦和困扰。
大多数大企业都在积极推动这一进程,追踪整个汽车的性能数据,从而帮助更好地维护汽车,最终增加汽车的里程数量,并减少汽车维修费用。一些物流公司和运输公司还将高级的汽车性能监控设备与商用卡车的内置位置传感器进行整合,从而及时地掌握汽车性能情况。
另外,大数据分析还帮助路线规划者通过规划合理的行车路线减少路程数,这种过程不仅减少了汽车的行程,而且也提升了汽车的效率,并将车辆维护费用减少5%。
3、有助于配件升级和汽车重新设计。随着汽车运行方式相关的知识了越来越多地被人了解,工程师们也开始认识到,大数据就是一个有助于设计未来更好汽车的一个重要渠道。
通过挖掘保修数据,大汽车公司能够进行高级的性价比分析。或许,公司可能会撤消那些需要频繁进行维修的低成本零件,并用高价格的配件代替。虽然这可能会增加零件成本,但是这种升级后的零件却能够使用更长的时间,而且还可以避免保修成本,从长期来看,可以帮助公司节省成本。
这种对所有数据进行分析和应用的做法,可能会意味着,将来有一天,我们将能够打造一辆无漏洞的优质汽车,或许也不可能,但无论如何,我们会能够更加接近于这样的目标。通过缩短设计和工程周期、优化能耗方法、减少整个研发成本,汽车公司也将会推出更加创新、更加可靠、更加持久耐用的新模式。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04在CDA(Certified Data Analyst)数据分析师的工作链路中,数据读取是连接原始数据与后续分析的关键桥梁。如果说数据采集是“获 ...
2026-01-04尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26