
大数据时代 树立大数据意识(2)_数据分析师
二,大数据的六个维度
1.安全维度
没有国家信息安全的技术保障和环境氛围,国家的数字主权会受到侵害,国家的网络边防将受到威胁,国家在经济全球化和世界多极化持续推进过程的发展利益将难以维护;对内而言,没有国家信息安全的法律体系建设和舆论引导,国家的政治安全会带来挑战,各类非传统安全会造成侵害,社会的稳定会受到威胁。
大数据时代,线上与线下、虚拟与现实、软件与硬件重叠交错、跨界影响,尤其是核心的大数据不可避免地成为各种利益诉求的集散地、国与国之间进行渗透的重要渠道。数据安全既影响商业、金融等经济安全,也可能涉及文化意识形态等精神领域,甚至可能会激发社会动荡、改变战争形态、影响国家安全。
明确大数据采集和使用所涉及的包括数据隐私、准确性、可获取性、归档和保存等问题在内的应用规则,厘定信息使用权限和职责,确保数据依照规则规范使用。要重视大数据安全体系建设。大数据涉及政府数据公开,所以大数据的安全防护,需要有全新的模式,不仅要重视对大数据本身的安全保障,还要注重大数据平台的安全建设。
2.管理维度
数据安全管理问题,是我国应用大数据面临的最大风险。虽然将海量数据集中存储,方便了数据分析和处理,但由于安全管理不当所造成的大数据丢失和损坏,则将引发毁灭性的灾难。
筑牢我国大数据安全管理的“三道防线”,强化数据安全立法工作,防止“大而无序”;尽快实现对关键装备、核心领域与人才的自主自控,防止“大而无力”;高度重视大数据显隐价值保护,防止“大而无安”。总之,要以国家核心安全需要为牵引,多措并举实现大数据安全保障。
3.政府治理维度
大数据为政府治理能力的提升带来了发展机遇。首先是为推动政府治理理念和模式的变化带来机遇。在政府治理领域,通过让海量、动态、多样的数据有效集成为有价值的信息资源,推动政府转变管理理念和治理模式,进而加快治理体系和治理能力现代化。其次是为推动政府治理决策精细化和科学化带来机遇。
从政府层面来说,大数据可以将原本分散存储在不同部门、行业、主体的数据作为整体加以利用,实现统一管理,为信息分析、利用、开放提供基础。同时,大数据的信息平台,使数据资料更加全面,政府部门间的数据信息调用将更加方便快捷,可以有效地提高工作效率。大数据处理模式和大数据技术的应用,可以使政府决策更具科学性、共识性;帮助政府在第一时间内获得市场数据,有利于对市场的监管;提升公共管理和服务能力,有利于定制个性化服务。
4.互联网思维维度
互联网思维是一个多元概念。一般认为,互联网思维指在(移动)互联网、大数据、云计算等科技不断发展的背景下,对市场、对用户、对产品、对企业价值链乃至对整个商业生态进行重新审视的思考方式,本质是发散的非线性思维。
将大数据和社会治理紧密结合起来,改进网络舆情源头治理。将大数据和网上政务信息公开紧密结合起来,提升政府公信力。将大数据和日常舆情管理紧密结合起来,提高网络舆情整体掌控能力。将大数据和突发事件应对紧密结合起来,提高网络舆情应急处置能力。将大数据和舆论引导紧密结合起来,提高感染力和说服力。
5.生存维度
大数据是数字化生存时代的新型战略资源,正在改变人类的生产和生活方式,对国家和社会发展作用巨大。近年来,大数据引起各国科技界、产业界和政府部门的高度关注。
作为个体则必须在这个特定的环境中对自己的目的、价值和意图进行重建,从而达到强调自己个性和分享他人个性的理解。任何技术都倾向于创造一个新的人类环境。而信息技术、电脑网络乃至最近问世的大数据,已经为人类创造出一个崭新的环境。
6.实践维度
大数据时代,只有让政府以及各社会主体在合理共享各种最新数据的基础上,发挥各自的优势,深度挖掘数据的价值,在提供公共服务的方式、内容和机制上不断创新,以适应快速变化的社会需求和环境,才能不断提高我国的国家治理能力和实现社会治理方式的创新。深圳市福田区充分认识基础数据的重要性,在如何保证动态、精准、充分占有基础数据方面进行了卓有成效的创新和探索。
把大数据的手段和方法引入管理领域,是实现管理现代化的有效路径,也是大数据时代的必然要求。在广东省,伴随着经济的迅猛发展,地方税收纳税登记户从1994年60多万户增加到2011年的285多万户,地税收入从184亿元增加到4248亿元,而同期,地税系统干部人数仅增加了20%。海量数据的即时获取和精确分析成为摆在管理者面前的一道难题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-29从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-292025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-29PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-29t 检验与 Wilcoxon 检验:数据差异分析的两大核心方法 在数据分析的广阔领域中,判断两组或多组数据之间是否存在显著差异是一项 ...
2025-07-29PowerBI 添加索引列全攻略 在使用 PowerBI 进行数据处理与分析时,添加索引列是一项极为实用的操作技巧。索引列能为数据表中的每 ...
2025-07-29