
“大数据时代”莫忘信息安全“_数据分析师
围绕个人信息的采集、加工、开发和销售正悄然变为一条“数据产业链”,由于信息泄露造成的“精准营销”和金融诈骗活动,给人们的隐私和财产造成了难以估量的损失。我们既不能熟视无睹,也不能因噎废食
近日,一则“130万考研用户信息网上叫卖”的消息引发社会关注。据报道,上百万考生的报名信息被人以1.5万元的价格出售,一些考生因此遭遇各种电话和短信“精准营销”。尽管中国研究生招生网工作人员表示,已就此向公安机关报案,但该事件暴露出的信息安全问题不容忽视。
在大数据时代,网络对人们经济、社会活动的介入越来越深,信息和数据的收集也变得越来越便捷。这一方面使相关行业能够利用信息和数据实现更大的价值创造,另一方面也给个人信息的保护带来前所未有的挑战。用户的位置信息、行为信息、消费信息、社交信息等等,都变成了可被存储、分析的数据,如果将这些数据汇总起来,可以准确还原和预测个人在日常生活中的真实活动轨迹,如果被滥用势必加剧个人信息风险。近年来,从网上疯传的各种“查开房软件”,到频繁发生的客户信息被倒卖事件,都表明信息安全已成为全社会共同面对的系统性风险。
用户信息不仅涉及个人隐私,更是一种重要的“数据资产”,特别是互联网经济的崛起,使“大数据”带来的商业价值日益凸显。也正因为如此,相关行业的数据和信息被作为核心资源广泛争夺。然而,一方面缺少监管,一方面又有利可图,使非法获取个人信息的行为获得了很大的操作空间。近年来,由于经济利益的驱使、行业生态的混乱、法律法规的缺失,以及公民自身对个人信息保护意识的欠缺等原因,围绕个人信息的采集、加工、开发和销售正悄然变为一条“数据产业链”,由于信息泄露造成的“精准营销”和金融诈骗活动,给人们的隐私和财产造成了难以估量的损失。
我们也要看到,今天的世界正变得日益数字化,无论是政府对公共政策的制定,还是企业对市场行情的分析,都离不开信息和数据的采集。观察互联网经济的每一次创新,如百度打造的“大数据引擎”,支付宝生成的“十年账单”等,处处都让人们感受到了数据的力量。在大数据时代的信息安全风险面前,我们既不能熟视无睹,也不能因噎废食。如何让个人信息的保存、使用和流动保持在安全可控的范围,在合法、合理利用数据资源增进社会福祉的同时,筑牢个人信息安全的“防火墙”,已经成为政府和企业都无法回避的问题。
捍卫大数据时代的个人信息安全,亟待建立健全系统化的防护体系。在法律层面,迫切需要制定保护公民个人信息的专门性法规,明确规定个人信息的保护范围,并对个人信息的采集、使用、处理予以特别规定;在行业层面,要建立互联网、电信、金融等重点领域的行业自律机制,完善客户信息的管理规范,使客户信息的采集更加透明,并切实做好保密义务;在技术层面,要加快建立规范的网络认证标准体系,加快大数据安全保障关键技术的推广,降低信息泄露的潜在风险。唯有如此,才能有效遏制大数据时代个人信息安全的系统性风险,使大数据真正成为促进信息消费的新动力。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16