
[一切的结果都是取舍的结果。]
这两天粗读大数据。发现了一个问题,提出了一个疑问。
发现的问题是:大数据与大脑有相关性。大数据在日常生活中已经开始应用广泛,它的本质不是传统的数据统计带来的简单的因果关系,而是数据的相关关系。在相关关系分析法基础上的预测才是大数据的核心。这让人自然会想到大脑的功能,每个人的思维就是一个大数据处理体系,如果有的人擅长去寻找不同事件之间发生的因果关系,那么这个叫做因果错觉,因果错觉容易发生在女性身上,因为女性因性格敏感等特点,会不自觉的将事情发生的结果,采用自己主观判断来归因,但事实上,事情之间的相关关系才是真正的关系。人的思维体系中,相关关系更加重要,相关关系代表调取大脑中的既往相关经验,来处理眼前的事情,更加客观。
大数据将开启一次重大的时代转型。信息广速度快,是很好,可是这不是最重要的,最重要的是不要让数据无处不在。大脑就像数据仓库,在数据充满我们的大脑、生活、生命中时,如果不去清理,不去遗忘,很容易一脑子浆糊,身心不舒畅。任何环境下我们都需要在纷繁的情况里简化问题。
我的疑问是:怎么删除。在这个信息碎片化的时代,如何做一个自我的搜索和过滤器,最好做成一个芯片,安放在我的手腕处皮肤下,这样,我就可以快速的找到我想看到的东西,忽视噪音,更加直接的去感受和了解自己。因为路径缩短,我便可以将时间放长,慢慢的去体会和感受,就好像小女孩慢慢的舔一个棒棒糖,而不是猪八戒吞一个人参果。这才是我要的密度和质量。
芯片是个玩笑, 出色的信息提取能力能够促进一个人的决策,一个人的一念一息及多年慢慢形成的价值观才是做选择的依据。你是不是有和我一样的经历,上千张照片中,删还是不删是个问题。怎么确定保留哪张,根据什么原则,每个人都有不同的原则,有的人认为,人最全的一定要留,有的人认为背景全的一定要留,有的人认为留表情最好的,有人认为留姿势最美的,甚至有的认为没对好焦距的朦胧的才是最有意境的。而我应该最清楚我怎么筛选,艺术家罗丹说,雕像就在那块石料里,我只是将那些不要的东西去掉了。但是要知道雕像到底是什么,只有我自己才明白我自己到底要雕什么。看书也是一样,书籍能使一个人瞥见这个世界的一角。是你自己选择去瞥见哪一角。
对于大数据中垃圾数据的删除和遗忘处理,早已有人考虑过这个大课题并书写出来警醒大家。
对于个人生活中的删除,我没有找到特别好的方法,只能试试这样考虑:取和舍。一切的结果都是取舍的结果。拿处理碎片化信息举例,如何在微信圈中过度的被动文字中进行选择,而不是失掉独立思考的能力被一条又一条自动跳出来的新闻头条,推送提醒,对话提示等所左右:1)减少重复阅读的数量;2)选择激发自己的动力和能量的内容阅读;3)筛选过滤,超过10条都不会看的公众号可以删掉了,这代表你试错成功,那原本就是你不需要的信息;4)限定时间,可以常规,但必须节制,减少刷新次数;5)尝试每周至少有一天不看微信,将清净归还自己,不要让一个功能控制了你,更不允许左右你的心情。弹性调整是对自我的一种负责。也是对自我是否足够认知的衡量,越是了解自己越是容易根据内心变化和外在影响来及时调整状态。
日本可能因为资源集中而紧缺,一直很倡导简生活,最近很流行的一位日本女士所著的一本书《断舍离》,将人身边的外物采用各种方式进行清理,代表对内心的一种扫除力,从而保持一种简约清爽的生活态度。还有很多其他方式对生活进行删减,试试断食(辟谷),试试冥想训练,看网上写过一个训练,基本要求为整天不语,不带手机,不带手表,抛开时间和事件和想法的概念,体会真正的当下,自己面对自己。
从心理学的角度,做出选择-同时意味着舍弃其他的可能性-是一件异常困难的事情。造成这个困难的无非是利弊两个字,但因利弊两个字背后掺杂了太多的心理变量,因此难倒了古往今来多少英雄好汉。为了有能力更好的进行抽象的思考和决策,挑战自我,尝试一下删删删删的效果吧。
《互联网周刊》主编姜奇平为《删除》那本书写了序言,头一次想用截图的方式给人看,生怕破坏对人家思想的精妙之处,一个序言可以写成这个样子,这让人情何以堪。
参考书目
1、[英]维克托-迈尔-舍恩伯格著 盛杨燕 周涛 译 《大数据时代:生活、工作与思维的大变革》 浙江人民出版社
2、[英]维克托-迈尔-舍恩伯格著 袁杰 译《删除:大数据取舍之道》 浙江人民出版社
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-07抖音数据分析师:驱动平台增长的幕后推手 在抖音这个日活用户数以亿计的超级平台上,每一次用户的滑动、点赞、评论,每一条 ...
2025-08-07基于 SPSS 的中介效应分析结果解读:揭示变量间的隐性关联 在社会科学与自然科学研究中,变量之间的关系往往并非简单的直接作用 ...
2025-08-07