京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代安防智慧化明显如何抓住机遇
得益于IT信息技术的快速进步,人类可以随时随地记录下产生的各类数据,而同时数据存储的成本也正以前所未有的速度下降,一个大数据的时代在悄然来临。根据IDC预测,全球在2010年正式进入ZB时代,全球数据量大约每两年翻一番,意味着人类在最近两年产生的数据量相当于之前产生的全部数据量。爆炸式增长的数据,正推动人类进入大数据的时代。
作为信息时代海量数据的来源之一,安防视频监控产生了巨大的信息数据。特别是近几年随着平安城市、智能交通、智能建筑等行业的快速发展,大集成、大联网推动安防行业进入大数据时代。
在大数据时代背景下,安防行业的依靠数据分析应用,也实现了智慧化管理,如何利用大数据带来的智慧,在行业中抓住机遇求发展?
有专家表示,平安城市逐渐转为智慧城市,其本质是利用大数据的分析服务于人们的生活,提高效率,这是主旋律。而要应对安防应用中遇到海量数据问题,在当前情况下,云安防无疑是智慧城市建设的一个必然选择。
由于云计算具有独特的虚拟化技术、交互性和计算资源共享特性。采用云安防解决方案无疑能够更好的解决安防应用中的高效大数据处理需求。而实际上,近些年,国内许多安防厂商已经开始积极的开发和推进云安防产品的发展。
◆更智慧的一体化管理需求
在业内,许多厂商认为智慧安防的的发展就是要不断提升产品技术水平,增加更多智能化功能。但实际上,任何智慧化的产品都需要高效的管理才能发挥出“智能化”水准。在这种情况下,如何提升管理水平就成为一个重点。
比如具体到银行等关键行业,日常安防业务不仅仅涉及到全国的联网监控,更有许多与安防相关的人的管理,最为简单的例子就是运钞车的管理。大多数银行都会制定严格的运钞车管理制度,这种制度假如得不到有效的监控和管理,很可能就会出现不可预知的安全隐患。
对此,有业内专家就表示,任何产品和技术都需要人来管理和应用,为用户提供业务紧密融合的一体化管理解决方案,在应用高科技技术的同时,还能促进对人的管理,真正实现人防、物防、技防的一体化管理,这才是符合安防未来发展趋势的智慧安防!
◆产品技术的多元化创新
智慧城市建设过程中,产品技术的多元化创新无疑是一个重点。在2014北京安博会“圆桌会谈”上,参与活动海康、大华等安防厂商都在强调产品的持续化创新,尤其强调拥有全系列产品构造的所谓的“蓝色布局”更是衡量一家安防厂商实力高下的关键。
在这方面,国内各家安防厂商可谓是各有所长。比如大华就更专注从采集、编码、存储、共享、传输在内的多元智能化技术的开发,同时更注重产品与其他的行业内好的平台进行对接,共同来促进智慧城市的落地;比如蓝色星际更关注多元产品技术的开发,并兼顾前后端平台技术的综合发展。
安全的智慧化城市管理
平安城市是一个特大型、综合性非常强的管理系统,对于数据安全的要求特别严格,对于任何一个系统,其安全性、可靠性都是首先要考量的一个重点因素。尤其是进入到智慧城市建设的阶段,云技术的应用更要求厂商具有独特的安全存储和异地容灾解决方案。
目前,国内约有400余个城市和地区启动了智慧城市的建设。对于国内的安防厂商而言,只要能基于大数据、云计算等技术进行应用开发,在产品技术、平台建设以及应用管理方面有所创新,就一定能够抓住智慧化的机遇,在未来发展中为自己赢得巨大商机。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09表结构数据作为结构化数据的核心载体,其“获取-加工-使用”全流程,是CDA(Certified Data Analyst)数据分析师开展专业工作的 ...
2026-02-09在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04