京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代安防智慧化明显如何抓住机遇
得益于IT信息技术的快速进步,人类可以随时随地记录下产生的各类数据,而同时数据存储的成本也正以前所未有的速度下降,一个大数据的时代在悄然来临。根据IDC预测,全球在2010年正式进入ZB时代,全球数据量大约每两年翻一番,意味着人类在最近两年产生的数据量相当于之前产生的全部数据量。爆炸式增长的数据,正推动人类进入大数据的时代。
作为信息时代海量数据的来源之一,安防视频监控产生了巨大的信息数据。特别是近几年随着平安城市、智能交通、智能建筑等行业的快速发展,大集成、大联网推动安防行业进入大数据时代。
在大数据时代背景下,安防行业的依靠数据分析应用,也实现了智慧化管理,如何利用大数据带来的智慧,在行业中抓住机遇求发展?
有专家表示,平安城市逐渐转为智慧城市,其本质是利用大数据的分析服务于人们的生活,提高效率,这是主旋律。而要应对安防应用中遇到海量数据问题,在当前情况下,云安防无疑是智慧城市建设的一个必然选择。
由于云计算具有独特的虚拟化技术、交互性和计算资源共享特性。采用云安防解决方案无疑能够更好的解决安防应用中的高效大数据处理需求。而实际上,近些年,国内许多安防厂商已经开始积极的开发和推进云安防产品的发展。
◆更智慧的一体化管理需求
在业内,许多厂商认为智慧安防的的发展就是要不断提升产品技术水平,增加更多智能化功能。但实际上,任何智慧化的产品都需要高效的管理才能发挥出“智能化”水准。在这种情况下,如何提升管理水平就成为一个重点。
比如具体到银行等关键行业,日常安防业务不仅仅涉及到全国的联网监控,更有许多与安防相关的人的管理,最为简单的例子就是运钞车的管理。大多数银行都会制定严格的运钞车管理制度,这种制度假如得不到有效的监控和管理,很可能就会出现不可预知的安全隐患。
对此,有业内专家就表示,任何产品和技术都需要人来管理和应用,为用户提供业务紧密融合的一体化管理解决方案,在应用高科技技术的同时,还能促进对人的管理,真正实现人防、物防、技防的一体化管理,这才是符合安防未来发展趋势的智慧安防!
◆产品技术的多元化创新
智慧城市建设过程中,产品技术的多元化创新无疑是一个重点。在2014北京安博会“圆桌会谈”上,参与活动海康、大华等安防厂商都在强调产品的持续化创新,尤其强调拥有全系列产品构造的所谓的“蓝色布局”更是衡量一家安防厂商实力高下的关键。
在这方面,国内各家安防厂商可谓是各有所长。比如大华就更专注从采集、编码、存储、共享、传输在内的多元智能化技术的开发,同时更注重产品与其他的行业内好的平台进行对接,共同来促进智慧城市的落地;比如蓝色星际更关注多元产品技术的开发,并兼顾前后端平台技术的综合发展。
安全的智慧化城市管理
平安城市是一个特大型、综合性非常强的管理系统,对于数据安全的要求特别严格,对于任何一个系统,其安全性、可靠性都是首先要考量的一个重点因素。尤其是进入到智慧城市建设的阶段,云技术的应用更要求厂商具有独特的安全存储和异地容灾解决方案。
目前,国内约有400余个城市和地区启动了智慧城市的建设。对于国内的安防厂商而言,只要能基于大数据、云计算等技术进行应用开发,在产品技术、平台建设以及应用管理方面有所创新,就一定能够抓住智慧化的机遇,在未来发展中为自己赢得巨大商机。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01