
【Evalueserve】招聘Senior Data Analyst/高级数据分析师(上海)
职位月薪:面议
工作地点:上海
发布日期:2014-12-24
工作性质:全职
工作经验:1-3年
最低学历:本科
招聘人数:3人
职位类别:数据分析师
1. Initial Problem Structuring & Proposal Development:
a. Understanding clients requirements (business objectives, scope of information to be covered, business questions to be answered, etc.) independently
b. Understand the nature, source, structure & quality of data as relevant for the project
c. Conversion of the business requirement into data specification – collection, structuring, cleaning, analysis, reporting
d. As per the requirements, structuring the project (scope, research methodology, planned output – analysis/insights, project pricing, etc.)
e. Preparing proposals to be presented to the client
2. Project Planning & Setup:
a. Detailed scoping of work & issue analysis for execution
b. Preparing detailed project plans (GANTT Chart)
c. Participating-in/driving team briefing and task allocation
3. Project Execution (1-2 Projects at Any Point of Time):
a. Individual contribution:
i. Data collection, structuring, cleaning
ii. Statistical analysis using analytical tools like Excel, SAS, SPSS, etc.
iii. Non-statistical analysis as required
iv. Deriving insights and reporting/presentation
b. Leads analytical efforts to support business needs: balancing hands-on deeper technical contributions, with leadership responsibility for project management
c. Participating-in and driving brainstorming sessions for problem structuring, issue analysis & decision tree analysis, hypothesis building & validation, development of insights and recommendations (throughout the project)
d. Ensuring project team’s contribution (managing entry-level analysts):
i. Guiding team members (what to do and how to do different tasks)
ii. Monitoring the work done by the team members
iii. Ensuring top quality delivery by the project team
e. Participating in client communication throughout project lifecycle.
4. Undertaking Administrative Tasks
a. Project initiation/closure
b. Invoicing
Please note that a project may involve some or all of the elements as described above. Some projects may require us to focus only on data cleaning where as some may require us to derive in-depth insights.
Expected Qualifications & Skills
1. Degree (bachelors and/or masters degree or equivalent) in a numerical course e.g. statistics, mathematics, physics, economics, engineering, computer science, information science, operations research, IT or equivalent
2. Technical skills may include:
a. Good knowledge of statistical/information tools – SAS, SPSS, VBA, Excel, R, STATA, MS SQL, etc.
b. Exposure to work with multiple datasets, correlation analysis and hypothesis testing.
c. Exposure to advanced analytics methodologies such as regression (linear, logistic, etc.), cluster analysis, CART/CHAID, etc.
3. Language skills (verbal and written):
a. Excellent Chinese– verbal and written
b. Excellent English skills
4. At least 3 years of experience (a maximum of 5) in data analytics / quantitative roles
5. Experience in the area of problem structuring, conducting issue/decision tree analysis, developing/validating hypotheses will be a plus
6. Knowledge of different cultures and ability to work in an international environment
7. Excellent MS Office skills
8. Positive attitude and solution orientation – people who only identify problems need not apply, we look for people who not only identify problems but also offer solutions
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04