
大数据时代是相信数据科学还是领导的感觉
即使企业有开发大数据的能力(其实大部分并没有这个能力),他们还总是喜欢使用未经测试的想当然的想法,而非利用数据科学来做决策。视觉分析公司Atheon Analytics的总经理Guy Cuthbert认为,即使是在那些使用数据的公司中,许多仍然会有选择性的支持那些已经被认可的观点,而非真正数据验证的事实,而利用数据本身,只是靠想法制定决策的一种伪装罢了。
最近Actian公司在伦敦参加的一个圆桌会议上,Cuthbert谈到,数据科学涉及到提出假设和检验假设的方法,但他所遇到的大多数商品零售企业都绕过了这两个方法。
他说:我能一口气说出许多零售商的可怕故事,这些故事都有一个共同点,即这些零售商相信客户存在一个特定的行为方式,因为他们在开张的那一天就有人这么告诉他们了。他们从了没有真正质疑过这些说法而去探究真实的情况品类的真实情况、国家中特定地区的情况,或尺码的情况。数不清的案例表明,人们轻信别人告诉他们的东西,但却不去自己探究真正的事实是什么样的。
我们做了很多工作,想要把各种组织从‘想法驱动’改变为‘数据驱动’,让它们开始采用事实和假设的科学方法,而不是‘想当然’。Cuthbert说。
Cuthbert说,自己曾经努力帮助过许多公司,以让它们理解它们的产品的绩效表现,但这些公司都无法被认为具有分析能力。按照他的推测,全球的商业企业中大概只有百分之一甚至是只有千分之一是真正的数据驱动的。
Cuthbert说:我见过大量的依靠直觉运营的企业并不了解原来数据还可以产生决策。我也听过太多高管们滔滔不绝地喷出了各种各样的其实没有什么‘营养’的想法。因此,如果数据绘制者或者数据科学家去做一些事情,去教商人们他们的组织中所蕴含的那些令人着迷数据及背后的事实,他们就会开始自觉地去认识它们了。
然而,让业务揭穿企业中的一些(不真实)的神话并开始接受现实,接受以数据为基础的结论,并非易事。
在我们向人们展示我们的观点时,常遇到一些充满火药味的‘回击’,他们当面指责我们,说我们所说的是彻头彻尾的缪论。Cuthbert说。
另外一个问题是即使公司试图科学地使用数据,他们关注的点也过于聚焦而狭隘。
大多数与我们合作的公司关注已知的东西,他们总是着眼于诸如‘我们希望明年的收入增加6%,让我们确保能搞定6%’之类的东西。Cuthbert说。
他们没有去寻找增长30%或者120%的机会。我们很多工作只是浮于表面,或者展示那些他们其实自己也没有弄懂的一套东西。
不幸的是,尽管技术进步让我们能够非常容易地处理数十亿条数据,但分析本身,却必须依靠与人力完成。
机器缺乏灵感,这是造成机器学习以及其他计算机技术与人类思维鸿沟巨大的现时原因。Cuthbert说,灵感来自于人类懂得如何从数据中找出隐含的信息。
大数据分析公司Actian(之前叫Ingres)的CEO Steve Shine说,一直到现在,为了满足大数据所需要的开发技能,他们拥有一组特定的高预算的客户,这些客户需要他们的这些技能完成项目。
在过去的三四年中,如果你在任何的一个地方接触过hadoop项目,你就会意识到,能够写一个高效的MapReduce程序并使hadoop高效运行是一个相当牛逼的技能。Shine说,这种技能被技术社区热切地保护了起来,却并没有扩散,但最近的12个月内发生了戏剧性的变化。大家都接受了一个事情,即需要让利用新的技术变得更加容易。
我们把人们带回上世纪80年代,那时如果你能有现在通过代码来获取所有的数据和发现新见解的能力,你将会变得有多么的多产。
但现在新的问题是,大数据技术在迅猛扩散,各种版本的Hadoop、NoSQL,以及提供和整合数据的新方法层出不穷。
没有一个CIO因为把这些东西能够‘粘合’在一起而获得奖励。企业并不在乎你多快多好的把这些粘合在一起。企业也不在乎你到底能多快的帮助他找到客户流失数据。Shine说。
然而,现在的技术允许企业从他们通常的生产数据中发现意想不到的商业潜力。
Shine援引了他在福利和工资服务行业中的一个客户的情况,对于工资变化、毕业生和参与者的信息,这个客户自己处理数据后得到的信息,甚至要比政府提供的信息更能准确描绘宏观经济。
他说:那些看起来传统的组织,实际上已经有一个业务,即他们意识到如果它们以数据为中心,并且利用数据,以及尽可能地结合其它他们能获得的数据,他们就能够基本做出比现在他们能做出来的东西更具根本价值的东西,他说。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18