
从大数据到深数据,在过去的10个月,我主持参与了麻省理工的“IDEAS中国”项目——一个由30多位中国商界领袖组成的,为期10个月的创新之旅。今年,该项目招收了中国一个主要国有银行的数位高管。这个团队的目标之一,是在大数据和其他相关的颠覆性技术到来时,仍可以重塑他们组织的未来,这也使我更多地接触了解了中国经济。正如阿里巴巴颇有远见的创始人马云所说,“五年后,我们预计人类纪元将由信息技术时代转变为大数据技术时代。”
但是,“数据技术”时代、“大数据”时代究竟意味着什么呢?现在,它往往意味着谷歌、亚马逊、Facebook和苹果这类大公司,这些我们曾经喜爱现在却越来越怀疑、不信任和恐惧的公司,会在你毫不知情时,收集你的数据,并转卖给其他公司,当你注意到出现在屏幕上的精准投放的网络广告时也就不足为怪了。有趣的是,最初人们对于美国的这些大数据帝国非常积极的看法现已转向欧洲及世界许多其他地方,包括北美。爱德华·斯诺登事件使我们大家都对大数据的误用更加敏感。但是,这只是表面问题,真正的问题更深层。
毫无疑问,大数据创造了许多全新的可能性, 但同时我认为我们应该明确地区分开浅层次的大数据与深层次数据。所谓浅层次数据,指的是有关别人的数据: 别人说了什么,做了什么。而这几乎正是目前所有大数据所包括的内容。
而深层次数据是帮助个人和社会来认识他们自己的。深层次数据就像一面镜子:它让你认识你自己—无论是作为个人还是作为社区一员。在我过去二十年的职业生涯中,许多团队和机构在我的帮助下进行了一些有重大意义的创新及革命性的变化。我从中所学习到的一点就是:产生革命性变化的关键就在于清楚地认识自己。这就是为什么深层次数据是很重要的。它对未来的机构,我们的社会以及整个世界都非常重要。
但是如今大数据的所作所为往往是相反的:大数据被用来操纵我们的行为,用我们从没想要的广告来对我们狂轰乱炸。表面上大数据用于将人类思维外包给算法,以降低习惯性思维边界内的意识水平。深数据,如果以正确的方式加以研发和成长,可以帮助我们提高认识水平,并将利益攸关方的意识体系转变过来,从对自我系统的认识(我自己的筒仓意识)转变到对生态系统的认识(整体意识)。
让我用两幅画面简单总结一下表面的大数据和深数据的区别:
从科学1.0到科学2.0的旅程是将科学观察这一笔直的望远镜掰回来到自我观察的过程——这个自我指的是我们的个人和集体的统一。
从本质上说,IDEAS的参与者都讲到了以下变化:
•思维:从单纯接受老模式,到创造性思维
在过去的这几个月,参加活动的这些高层领导们被分成四个小组,每个小组都试图尝试一些新的方法,来寻求未来的机会。令我吃惊的是,每个小组都开发出一种跨组织的合作平台原型,每个利益方都能通过这个平台用数据进行沟通。所有这些平台的建设原型都还在早期阶段,不过有一点是这四个小组都反复提到的,那就是大家思考问题要从“我”转到“我们”,从“自我”转到“整体”的重要性。
例如,今天我们用国民生产总值GDP来衡量经济进步。国民生产总值GDP是社会经济表面数据的一个很好的衡量。但是用什么等效的深数据工具来衡量一个社会真正的经济进步?我相信这样一个衡量系统应该植根于真实的社会发展成果(例如,预期寿命),以及个人和社区(如生活质量)的发展状况。去年Presencing研究所,GIZ全球领导学院(德国发展合作部)和位于Bhutan的国民幸福指数中心联合发起了全球福祉实验室(Global Wellbeing Lab),该实验室把世界各地来自政府,企业和民间社会的领导人联合在一起,来开拓寻找新的指标和深数据工具,帮助社区和社会生态系统观察自己,建立观测衡量社会运营的新模式。
今天你在哪里能看到这样的新的指标体系或深数据的工具在生根发芽?我们可以从这些早期例子中学到什么?深层数据对你自己意味着什么?在你自己的生活和工作中什么是快乐幸福的真实来源,哪些指标可以以更有意义的方式帮你看到和感觉到自己的发展?我们如何才能共同开拓,实现商业,社会及个人从大数据到深层数据的转变?这都是我们要思考的问题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01