
大数据:大变革,大竞争,大挑战_数据分析师
“大数据现在已经成为天大的事”。11月12日,美国政府公布新版大数据研究计划,白宫科技政策办公室主任霍尔德伦致辞说,他去年曾预测大数据将是件“大事”,现在来看保守了。
时间倒回到6月,斯诺登的41张幻灯片,让美国大数据监控项目“棱镜”浮出水面,令人不寒而栗。
2013年被一些专家称为“大数据元年”。对大数据时代的乐观和忧虑,在这一年充分展示。
“除了上帝,每个人都必须用数据说话。”不仅是人,整个世界都越来越数据化。信息革命深入发展,如潮的数据澎湃而至,数量之巨,种类之杂,来势之快,前所未有。
IDC(国际数据公司)估计,全球2012年产生数据总量约2.8泽字节。有人计算,这相当于3000多亿部时长2小时的高清电影,连着看7000多万年也看不完。
而这还只是序曲。更大的浪潮在后头。
IDC预测,未来几年,全球数据量每隔两年翻一番,2020年达到40泽字节。
大数据不单单是“数据的工业革命”,而是一场更深刻的科技和产业大变革的组成部分,是对未来大趋势、时代新特征的一种描述。大数据是推动这场大变革的重要动力,将成为促进经济社会转型新的关键资源。搜集、分析和运用指数级增长的庞大数据,将催生创新,为各行各业提供新的发展机遇,给人们日常生活带来改变。
星巴克有意推出的“大数据咖啡杯”就是个小小的例子。美国媒体报道,这家咖啡连锁巨头打算试验在一些咖啡杯中装上传感器,收集常客喝咖啡速度等数据,从而为喝咖啡较慢顾客提供保温效果好的杯子,提高其满意度和忠诚度。
业内人士认为,大数据的本质还不在于“大”,而是以崭新的思维和技术去分析海量数据,揭示其中隐藏的人类行为等模式,由此创造新产品和服务,或是预测未来趋势。
畅销书《大数据时代》的作者、英国牛津大学数据科学家舍恩伯格认为,大数据是一种新的价值观和方法论,人们面对的不再是随机样本而是全体数据,不是精确性而是混杂性,不是因果关系而是相关关系。
“现有的认知和体系是建立在稀缺数据上的成果,人们思维和工作方式必须发生变革以适应大数据时代的到来。”舍恩伯格在其书中写道。
大数据被视为创新和生产力提升的下一个前沿,正成为国家竞争力的要素之一,在世界范围内日益受到重视。多国政府加大了对大数据发展的扶持力度,甚至上升到国家战略的高度。2013年,围绕大数据的国际竞争继续加码。
咨询公司益百利集团的研究显示,全球对大数据项目投资总额去年已达45亿欧元(约60亿美元),预计今明两年均会保持约40%的增长速度。
在美国,大数据已由热点词汇变成重点项目。去年3月,美国政府已公布2亿美元的《大数据研究发展计划》,今年11月再度公布涉及各级政府、私企、科研机构的多个大数据研究项目。美国国家卫生研究院、国家科学基金会等都参与其中,有评论称之为美国大数据战略2.0版。
在英国,虽然经济不景气、财政紧缩,但政府依然为大数据一掷千金。2013年初,英国商业、创新和技能部宣布将注资8亿英镑发展8类高新技术,其中1.89亿英镑(约3亿美元)用于大数据项目。
大数据在中国也已启动驶入“快车道”,政府、企业和科研院所正多方位布局。工信部的物联网“十二五”发展规划,将信息处理技术作为四项关键创新技术工程之一,其中包括海量数据存储、数据挖掘等。随着4G牌照在2013年末的发放,更高速的网络将带来更大的数据流,为政府和企业带来战略性资源。
“棱镜”今年曝光,让人看到大数据时代维护国家信息安全、保护个人隐私所面临的严峻挑战。
“棱镜门”让各国政府意识到“数据主权”的重要性,以及在网络和电信核心技术上依赖个别国家的恶果。必须加快自主创新以保护“数据主权”,已成为一些国家的共识。
英国《自然》杂志3月刊登的研究发现,只要有4个时间点和位置的数据就能确定一个人身份,准确率高达95%。这表明,大数据足以将一个人“描画”清晰,现有法律手段和核心技术对个人隐私的保护正在逐渐失效。
如何在大数据来袭中保持清醒和理性、有所创新和创造,对国家和个人来说同样是考验。
专家指出,大数据可望为中国经济转型升级发挥重要贡献,巨大的人口基数、经济体量和需求,意味着中国发展大数据拥有得天独厚的优势。但也应该看到,大数据具有价值密度低的特性,挖掘、分析等技术要求高。中国不能仅满足于做“世界数据中心”,应防止概念炒作,加强自主创新,进行前瞻性的制度设计等布局,顺势而为,将“中国创造”由机遇化为现实。
还应该警惕“迷信”大数据等倾向,认识到大数据分析可能存在的缺陷和不足。心理学家认为,大数据创造的模型会将人束缚在算法提供的选项中,过度依赖大数据分析也可能束缚创新。美国互联网活动家帕里泽称之为“互联网滤泡”:互联网个性化虽然带来方便,却将人们局限在自己过往行为模式的“气泡”中,无法触及海量信息带来的无尽可能。
大数据专家喜欢用莎士比亚“凡是过去,皆为序曲”来形容大数据分析的必然,但大数据提供的也只是参考答案而非最终答案。无论在小数据时代还是大数据时代,探索和创新精神都不应放弃,正如林肯所言,“预测未来最好的方法就是去创造未来”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01