京公网安备 11010802034615号
经营许可证编号:京B2-20210330
LinkedIn的大数据新玩法_数据分析师
在信息发达的今天,我相信任何一个对科技略有兴趣的人,都不会对大数据这个词语感到陌生。尽管大多数人并不一定知道它的确切含义,但仍然会为它可能为这个世界带来的变化而感到振奋。这正是大数据的迷人之处。
作为一个在大数据名词出现前就已在相关领域工作的人(我的研究生课程是用全美最快的并行电脑来构建三维气候模型,以模仿大气物理过程和化学反应),我很高兴地看到,大数据已渐为人知,并已展示出强大威力。与此同时,令人失望的是,大数据越来越多地被用于市场营销,而非用于创造对商业及人类社会真正有价值的东西。这也是我开始在LinkedIn上自称大数据宣传者和执行者的原因。在最近参加的一些活动和会议上,我已开始用这样的称号介绍自己。
今天我想谈的是一个叫EOI(Empower/Optimize/Innovate,即助力、优化、创新)的分析架构,这是LinkedIn的商业分析团队利用大数据手段来持续推动商业价值的方法。下面我将详细阐述这一分析架构:
E:助力信息分享
在该层面,业界常规的做法是,根据商业伙伴提出的问题予以专门分析,比如“去年、上月或上周我们赚了多少钱”、“导致核心业务表现指数大幅下降的主要原因是什么”等。这可能是大多数人对分析一词的定义。的确,这种分析对业务发展很重要,因为它可以帮助管理者做出基于此类数据的决策,至少可以促使他们考虑使用数据来做决策。
很多分析团队在解决这类问题上花费了大量时间。但随着工作效率的不断提高,问题来了——分析师会对一遍遍重复类似的分析感到厌倦。避免厌倦的方法之一是,尽可能多地利用技术手段简化分析流程,并尽可能将分析步骤自动化,比如自动化数据清理、自动化数据格式转化等。这样他们就可以腾出时间去做更有意思的事情——发掘更多可洞悉事物本质的结论并为商业伙伴提供相关决策参考。
一个典型案例是我们团队推出的一个名叫“Merlin”的内部分析网站。该网站是为LinkedIn销售团队建立的,其功能是自动生成结论型信息,一键搜索后,团队成员可迅速将此类信息分享给客户。每天有数千名来自销售团队的工作人员在使用这个网站,完全自助式获取数据、指标、报告、图表等。由于对地面销售业务给予了巨大支持而且前者因此得到了可观的经济回报,该项目被公司管理层评选为2011年LinkedIn十大最具改革力案例之一,并获得了公司国际销售部门授予的“影响力奖”。
O:优化业务表现
该领域包括更多高级分析工作,比如基于商业假设的深入分析、市场推广定位以及用户倾向模型的建立等,用于回答类似“如果我们这样做,会发生什么”、“最好的结果是什么”等问题。尽管这类分析执行起来通常要花费更长时间,但也会在业务上带来更多回报。更重要的是,因为几乎总是要从E,即“助力”环节建立起来的知识基础起步,所以分析人员能够更好地理解数据本质,并可将其与实际业务需求有效结合。
业界经常出现的情况是,当一个分析团队想跳过“助力”环节直接进入O,即“优化”环节时,往往会遭遇缺乏数据基础架构和基本商业知识的情况,最终必须回过头来夯实基础,然后才能进入下一步。一个关于“优化”的典型案例是,我们为LinkedIn高级账户业务建立的倾向模型。在这个模型中,我们利用用户身份、用户行为和社交图谱数据来为邮件营销行为区分人群属性。该模型已成为对LinkedIn最大线上业务在市场营销层面的核心驱动力。
I:探索创新模式
在硅谷,每个人都会因“创新”而兴奋。LinkedIn的分析团队有很多创新。我们坚信,衡量分析团队创新水准高下的终极标准是其对公司核心业务影响力的大小。当我们评估一项创新或风险项目的发展潜力时,我们会关注其在未来 1~3年的潜在商业影响,主要评价指标是它的营收、利润、用户黏性、访问量增幅等。我们还要确保影响力巨大的商业活动可以利用我们项目的研究成果,从而快速验证我们的分析解决方案在市场上是否可行,而非为创新而创新。
一个最新案例是,我们和公司市场部共同建立的企业用户兴趣指数,对那些有可能成为LinkedIn的企业型客户,在预期上进行排序。该项创新的关键在于,结合加权后的公司内部个人层面分值,以及B2B销售流程中决策者的影响,可得出该企业转化为LinkedIn客户的可能性。该系统建立迄今,一直被我们的地面销售团队广泛采用,有效提高了客户转化率,对销售额和工作效率的提升均颇有助益。
自倡导这一分析架构以来,我经常被问到的一个问题是,在合理的EOI架构下,资源配比情况是怎样的。事实上,根据分析团队工作进展和公司所处发展阶段,花费在EOI上的分析资源也各有不同,据此可大致绘出一条高低起伏的配置曲线。此中关键在于,在E、O、I任何一个层面,你至少都要投入能够产生实际作用的资源,并设计一个你认为对于现阶段业务增长能够发挥最佳效果的配置比例。总体而言,基于我和行业内众多分析师同事的讨论结果,合理的资源分配比例一般是 E>O>I,对于年均业务增速在两位数以上的企业来说,尤其如此。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09表结构数据作为结构化数据的核心载体,其“获取-加工-使用”全流程,是CDA(Certified Data Analyst)数据分析师开展专业工作的 ...
2026-02-09在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04