京公网安备 11010802034615号
经营许可证编号:京B2-20210330
选择“大数据”分析平台时的注意事项_数据分析师
“大数据”这个提法通常指的是数量、速度和种类都会急剧倍增的数据。根据 Enterprise Strategy 机构最新研究,大数据分析平台正在模仿这种定义:供应商产品发布数量在增长,产品增强功能迅速翻倍,现在有
多种部署选择支持。
Julie Lockner 是 ESG 的一位高级分析师,也是《稳固的大数据分析平台》一书的作者,她说企业在考虑他们如何把大数据技术整合到他们的架构中——尤其是当它变得价格可负担,并且可扩展时。
部分苦恼源自于大数据技术和术语的流动性,这带来了市场混乱的纠结。Lockner 把她的研究命名为“市场前景报告 101”,她相信这种纠结可以通过内部评估和培训来抚平。
这么做意味着从头开始,也就是从定义开始。
根据 ESG 的报告:“大数据分析项目如雨后春笋般冒了出来,有的甚至还没有理解清楚大数据真正的含义就开始做了。”
根据个人对这一定义理解的差异,这一术语的含义有可能扩大或者缩小。事实上,它的定义已经变得很宽泛了,ESG 给出了他们自己的解释:“超出正常处理能力边界和大小的数据集,迫使你采取非传统的方法。”
Lockner 表示,问题是数据量将会发展到 TB 级,当前系统上会开始出现“应力性骨折”,常规用途的技术在大数据以及大数据分析面前将不能保证成本高效的方法。那才是企业应该考虑扩展他们数据中心的时候。
此前,许多大型跨国公司都在做这样的项目,但现在有更多可以支付得起的选择。不管是预算,还是技能集。”目前,企业都使用了大量大数据部署方案,有定制开发的方法,大规模并行处理数据库,云计算服务或者一些可用工具的组合。开源 Apache Hadoop 项目的加入更激起了持续增长的兴趣,该开源项目支持大数据集分布式处理。
Lockner 评价说:“我不记得自 HTML 诞生之后还有另外哪一种技术可以产生这么大的影响了。”
企业要探索在大数据分析平台上进行投资,需要审查供应商对大数据的定义,并了解他们的产品与大数据的相关性,这是一个很好的开始点。Lockner 说:“当你与供应商交流时,要弄清楚他们产品定位以及能解决的问题是什么?”
例如,EMC 公司有多款大数据产品,比如 Greenplum 数据库软件,Greenplum 数据计算设备和 Isilon。这三款产品处理的都是不同类型问题。Lockner 说:“你必须真正把洋葱层层剥开,并做一些功课。”
首先,Lockner 推荐客户依靠他们有良好关系的供应商,要求查看他们大数据分析平台的演示。这些都是免费信息。因为这个企业中的人们会尽力理解他们想做的事,他们应该可以对供应商施加压力。
她推荐客户也要学习针对他们业界其它厂商的案例使用情况。这种信息可以帮助看清楚哪些供应商是真正的意见领袖,哪些不是。
企业应该依靠他们内部的 IT 部门和他们更有技术悟性的员工,来帮助做一些功课。Lockner 说:“通常情况下,一些实验室项目之类的会研究新技术,而且如果企业可以找到那些专家组并与他们集思广益讨论如何做的话,那是一个相当不错的开始。”
但是要真正剥离这些层次,企业应该判断什么是真正的需求,供应商的产品如何能满足这些需求。据该报告认为,这意味着要估量清楚内部可用技能,数据将从哪里来,分析行为需要多快完成,哪些内容需要与新平台整合。Lockner 表示:“理解业务需求比拥有出色的技术更重要。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09表结构数据作为结构化数据的核心载体,其“获取-加工-使用”全流程,是CDA(Certified Data Analyst)数据分析师开展专业工作的 ...
2026-02-09在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04