京公网安备 11010802034615号
经营许可证编号:京B2-20210330
选择“大数据”分析平台时的注意事项_数据分析师
“大数据”这个提法通常指的是数量、速度和种类都会急剧倍增的数据。根据 Enterprise Strategy 机构最新研究,大数据分析平台正在模仿这种定义:供应商产品发布数量在增长,产品增强功能迅速翻倍,现在有
多种部署选择支持。
Julie Lockner 是 ESG 的一位高级分析师,也是《稳固的大数据分析平台》一书的作者,她说企业在考虑他们如何把大数据技术整合到他们的架构中——尤其是当它变得价格可负担,并且可扩展时。
部分苦恼源自于大数据技术和术语的流动性,这带来了市场混乱的纠结。Lockner 把她的研究命名为“市场前景报告 101”,她相信这种纠结可以通过内部评估和培训来抚平。
这么做意味着从头开始,也就是从定义开始。
根据 ESG 的报告:“大数据分析项目如雨后春笋般冒了出来,有的甚至还没有理解清楚大数据真正的含义就开始做了。”
根据个人对这一定义理解的差异,这一术语的含义有可能扩大或者缩小。事实上,它的定义已经变得很宽泛了,ESG 给出了他们自己的解释:“超出正常处理能力边界和大小的数据集,迫使你采取非传统的方法。”
Lockner 表示,问题是数据量将会发展到 TB 级,当前系统上会开始出现“应力性骨折”,常规用途的技术在大数据以及大数据分析面前将不能保证成本高效的方法。那才是企业应该考虑扩展他们数据中心的时候。
此前,许多大型跨国公司都在做这样的项目,但现在有更多可以支付得起的选择。不管是预算,还是技能集。”目前,企业都使用了大量大数据部署方案,有定制开发的方法,大规模并行处理数据库,云计算服务或者一些可用工具的组合。开源 Apache Hadoop 项目的加入更激起了持续增长的兴趣,该开源项目支持大数据集分布式处理。
Lockner 评价说:“我不记得自 HTML 诞生之后还有另外哪一种技术可以产生这么大的影响了。”
企业要探索在大数据分析平台上进行投资,需要审查供应商对大数据的定义,并了解他们的产品与大数据的相关性,这是一个很好的开始点。Lockner 说:“当你与供应商交流时,要弄清楚他们产品定位以及能解决的问题是什么?”
例如,EMC 公司有多款大数据产品,比如 Greenplum 数据库软件,Greenplum 数据计算设备和 Isilon。这三款产品处理的都是不同类型问题。Lockner 说:“你必须真正把洋葱层层剥开,并做一些功课。”
首先,Lockner 推荐客户依靠他们有良好关系的供应商,要求查看他们大数据分析平台的演示。这些都是免费信息。因为这个企业中的人们会尽力理解他们想做的事,他们应该可以对供应商施加压力。
她推荐客户也要学习针对他们业界其它厂商的案例使用情况。这种信息可以帮助看清楚哪些供应商是真正的意见领袖,哪些不是。
企业应该依靠他们内部的 IT 部门和他们更有技术悟性的员工,来帮助做一些功课。Lockner 说:“通常情况下,一些实验室项目之类的会研究新技术,而且如果企业可以找到那些专家组并与他们集思广益讨论如何做的话,那是一个相当不错的开始。”
但是要真正剥离这些层次,企业应该判断什么是真正的需求,供应商的产品如何能满足这些需求。据该报告认为,这意味着要估量清楚内部可用技能,数据将从哪里来,分析行为需要多快完成,哪些内容需要与新平台整合。Lockner 表示:“理解业务需求比拥有出色的技术更重要。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22