京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据分析:女神为什么嫁得更差
就像查理·芒格所说的,所有科学几乎都可以相互解释,比如物理学可以解释政治事件,生物学可以解释经济领域的问题。当然,用经济学工具解释经济现象会比生物学效率更高,这也正是经济学存在的意义所在。
作为一个研究理财问题的写作者,我相信用理财学原理可以解释人生中的很多问题。理财可以把那些难以量化的指标放在一个可比的坐标下,让人们面对一些摸不着头脑的问题的时候,思路更加清晰一点。
总的来说投资理财要解决的问题有点像一个系统集成商要解决的问题。—当然,这也许是我的一种偏执,正所谓,手里拿着锤,看谁都像钉。
比如,婚姻问题就是一个很有意义的理财范畴的话题。我以前在一个理财杂志工作的时候,就发现婚姻对很多人的理财观几乎有着里程碑一样的意义,而且婚姻的确也对人们的个人财富产生了巨大的影响。
我最近发现了一个很有趣的现象,那就是一些很不错的年轻人,这些人用庸俗的标准来衡量他们异性配偶的“条件”是否很棒—在这,就先不讨论同性恋问题了。—但是,他们往往结婚很晚,而且最后的婚姻对他们的个人财富影响—这种个人财富影响不只是物质上的,也包括我们以前说过的个人社会财富—也不如想象中那么理想。
一个和我年龄差不多的朋友就是这样一种人。他需要找个女人结婚,但是当他遇到个女士,他对那个女士的看法总是:感觉不是很满意,但有总比没有好的那种程度—相信我,有的配偶真的还不如没有—他希望两个人的交往顺理成章地发展下去,但那个女士也有自己的想法,希望他对自己更加“用心”一点,其实也就是需要他付出更多的成本,不管是物质上的还是精力上的。
这个朋友比较苦恼,我明白他的意思,他因为成本付出有限被拒绝而苦恼,又觉得眼前这个女人不值得他花大成本去追求。这种矛盾的心情让他结婚很晚,而且即使结婚了,我也怀疑他婚姻的幸福程度。
这位朋友的求偶心态,安个最合适的名字应该叫“恋爱成本吝啬”。这种成本吝啬除了因为这个人自视比较高之外,从行为学上也可以找到共同的原因。麻省理工学院的丹·艾瑞里和申吉英教授曾经做过考查人们对选择权态度的实验,实验结果表明,保留选择的可能性是人类的一种偏好。
艾瑞里他们做的实验是这样的:他们设计了一个程序,这个程序会在电脑屏幕上出现3个不同颜色的方框,实验参与者用鼠标点击这三个方框会得到不同额度美元的奖励,每个参与者有权点击鼠标100次。而这三个方框所代表的奖励区间是不同的,参加实验者会被告知实验的目的是看哪个人得到的奖励最多。实验还有一个附加的规则,如果某个方框连续12次未被点击,它就会在屏幕上永久消失。参加实验的都是麻省理工学院好胜的年轻学生,即使参加点击那些方框最终的奖励不多,但他们都想成为一个神秘实验的胜利者。其实每个参与者通过几次连续点击就能找到某个方框所在的奖励区间大于其他两个方框,但是当他们看到未被点击的框越来越小,快要消失的时候,他们中的大多数人还是禁不住把一次点击的机会浪费在那个低得分的方框上。后来艾瑞里把三个方框的奖励额度差距拉大了一些,结果还是如此。
如果恋爱可以像投资那样平均把成本同时投入到不同的项目中去,我相信很多人会这么去做的。但是这里有个问题,那就是一夫一妻制已经成为一种被社会普遍认同的行为规范,同时和几个异性发生恋爱关系会使这个成本吝啬者获得很低的社会评价,有的甚至发生法律纠纷。这明显让那些成本吝啬者得不偿失,所以,这些家伙被迫把成本按照时间顺序平均分配。
这种选择其实有点像香港赛马会上的那些最后孤注一掷的赛马赌徒。其实不论是在香港还是英国,都有过这样的统计,比如一次赛马会有12场比赛,总是最后一场下注的额度比前边几场都大。造成这种大尾巴的原因就是这些赌徒中有很多成本吝啬者。大尾巴赌徒的心理账户虽然已经做出决定要把当天带来的所有钱全花到这次赛马会上,但是他们总是不能决定到底对哪匹马下大注,随着时间的推移决定在最后一次下注中孤注一掷。当然这些人的赌赛马成绩平均来说,就像那些恋爱成本吝啬者一样,也是比较差的。
不管是恋爱成本吝啬还是大尾巴赌徒,他们在选择时都遇到了一个难题:如何按照时间来平均分配成本。按时间来分配成本的取舍难度要大于投资中的平均分配成本,这是因为多元投资平均分配成本,对投资者的精力分散是比较有限的,而且投资收益是一种线性累加,也就是说一个投资者的总收益要看他在多项投资上的投资总收益;而按照时间来分配成本的人,由于他们无法预测未来,所以他们为保留多种选择而付出的成本绝大多数都成了沉没成本,这大大稀释了他们的最后的投资收益。被迫选择在最后一次下注中下大注,也完全是非理性的瞎蒙,对于赌赛马和恋爱都是一样的。
另一方面,恋爱成本吝啬者比大尾巴赌徒还存在一个劣势,那就是恋爱成本吝啬者的“资产”基本是在贬值的,而大尾巴赌徒兜里的钱不会在短短的一次赛马会上因通货膨胀贬值。恋爱成本吝啬者的所谓资产贬值的意思就是,随着年龄的增长,他们对异性的平均吸引力是在降低的。这有点像那些公司的固定资产折旧那样,在开始的时候这种折旧是不太容易发现的,而过一段时间,你会发现这种资产的确不那么值钱了。女性魅力的最高点,这是个非常难以测量的数值,而且因人而异差别很大,有的人在一个尖点上会坚持很久,比如范冰冰。但是也有的人只是昙花一现,即使是和自己相比,她们的最棒的时刻也只是那么一两年。毁掉这种魅力尖点的原因有很多,比如衰老、社会活动能力下降以及由于活得比较拧巴而造成的怪癖和坏脾气。如果你觉得我的这种表达还不够鲜活,其实可以看一下那个美剧《欲望都市》看看那些曾经的女神是怎样的,只是这个社会对她们的态度没有剧中那么友善。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17