
解析大数据如何在业务中发挥大价值_数据分析师
大数据时代,CIO的竞争优势从信息技术转变为围绕客户体验、数据分析、流程管理领域,让数据发挥大价值。
全球每秒钟发送2900万封电子邮件,推特上每天发布 5000万条消息;亚马逊每天产生 630万笔订单;Google每天需要处理24PB 的数据……
海量数据的处理,以及如何用数据创造更大的价值,给CIO们提出了更多的挑战。根据Valueresearch研究报告显示,大数据已经跃升为CIO关注度排名第四的技术与应用,并且还在持续提升中。
在一个家庭里,谁来主导旅游消费?谁来做旅游决策?
中青旅控股有限公司(下称“中青旅”)的IT部门和市场推广部联合成立了一个数据挖掘小组,在总裁助理林军的带领下,以业务需求出发用信息技术做数据挖掘,得出如下信息:在中国家庭里,旅游通常是太太来做决策;国内家庭客户策划旅游中,欧美游所需计划决策时间最长,其次是东南亚旅游,而国内游则是决策时间最短,经常会临时抱佛脚说走就走。于是,中青旅根据数据挖掘分析的结果,进行旅游产品策划和收益管理的调整,更能针对性地满足客户的需求和优化客户的体验,而且优化之后的旅游产品推广效果和盈利情况更佳。
中粮大悦城(下称“大悦城”)CIO张岩也表示,明晰业务需求才能更好地进行数据挖掘。大悦城进驻了数百家知名品牌商户,其内部系统的数据是纷繁复杂的:包括POS数据、客流的数据、商流的数据、会员的数据等等。如果从IT的角度进行分类管理、分析价值,各个业务部门的数据差异巨大,数据分析价值很低。但改由数据创造价值或者以大悦城整体商业价值来进行分析,数据分析更有价值 。
张岩带领数据分析团队,优先从商业的逻辑来考虑,对大悦城历年的销售数据进行系统梳理,建立了符合购物中心行业特色的数据分析体系。体系中包含了品牌商户、消费客群、项目收益3大系统模块,做到了从3大商业经营角度综合分析项目运转情况。得益于这套商业分析系统,朝阳大悦城帮助入驻的500多家商户,根据分析情况调整销售策略,实现了朝阳大悦城销售额年增长率近40%的高增长。
新东方教育科技集团信息管理部总监官冲认为,做数据分析和挖掘的人,一定得是懂业务的人。数据挖掘可以由外部人员来教授方法,但一定由内部人员自己实践。只有自己更了解自己的业务,能判断出哪类数据挖掘对企业有价值。其实,企业能用以分析的数据越全面,分析的结果就越接近于真实。大数据分析需要由业务需求为主导,这样企业能够从这些新的数据中获取新的洞察力,并将其与已知业务的各个细节相融合。
爱康国宾健康管理集团每年有200万人次的体检数据,这些数据蕴含着黄金般的价值。这些数据能从遗传、生活习惯、饮食等角度出发,对身体状况跟踪预测,对疾病早期预警,进行全方位的健康干预,进而对客户进行有偿或无偿服务,成为爱康国宾一片新的业务蓝海。
爱康国宾信息技术副总裁冯朝晖介绍,爱康国宾现在已经在为客户提供一些基础的健康管理服务,比如根据体检指标,分析客人的常见慢性病风险,并将慢性病的预防和保健常识通过短信定期推送给客人。未来这项业务还会和医院实现联动。
在张岩的主持下,大悦城搭建商业经营预测、管理体系:以数据挖掘方式,分析大悦城的整体商业变化规律。在数据挖掘中,大悦城并不是关注确切的销售数据,而是寻找发现在商业经营中销售变化的规律。同时,通过大数据技术筛选评估出近百个影响销售规律变化的主观因素,并通过大量的计算与验证,评估出每个影响因素的影响度指标,同时确定该影响因素相关的业务部门。最终,由近百个专项数据分析的结果,建立了全数据的大悦城经营模型(即虚拟大悦城)。从这个模型中,可以预测购物中心的经营状况,为招商、运营、推广各部门的工作提供了良好指导,并且成为管理层经营策略制定的重要依据。
CommVault中国区总经理徐永兴表示,做企业基本要考虑3个关键问题:1.增加收入;2.降低成本;3.控制风险。近30年来,企业将70%以上的资金和注意力都集中在前两项,而控制风险总是容易被忽视。CIO很多时候投入的大量的资金和精力都是在控制风险。其实,如果把数据管理做好,不但能帮CIO节省IT支出,甚至还能挖掘数据的价值,来更好地增加收入和降低成本,让CIO更具价值。
CIO如何从数据处理转型到数据业务?商业价值总经理万宁谈到,在社会信息化环境下,企业IT新趋势:1.CIO竞争优势从信息技术转变为围绕客户体验、数据分析、流程管理领域。2.相比业务流程设计,信息管理技术的重要性会更高。创建企业数字化业务模式,企业需要从技术角度、业务流程、人员角色、上升到企业企战略层面建立数字化企业。3.集中提供的应用和基础架构将会嵌入在业务服务之中,由企业共享的服务组织提供。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29