
大数据是什么_大数据可以做什么_大数据实际做了什么_大数据要怎么做
“大数据”一词时下的热门程度无需赘言,这一两年来互联网相关的任何活动、会议必不可少“大数据”板块。刚刚结束的第13届“中国互联网大会”也专设了大数据论坛。
对于任何一个大数据的从业者或初接触者,或许都会有个共同的感触:大数据很有用!大数据该怎么用?
关于大数据的著作和文章铺天盖地,似乎也共同在传递一个信息:越来越多的行业、人士开始关注并实际探索大数据的应用,我们正在一起描绘着大数据巨大效用的蓝图,但在实践的路上,我们都还在起步阶段小步前行。
大数据根基于互联网,数据仓库、数据挖掘、云计算等互联网技术的发展为大数据的应用奠定了基础。然而实践应用尚处于在探索中前进。同样作为探索学习,我想从我个人的理解角度,分享并与大家探讨四个问题:大数据是什么?大数据可以做什么?大数据实际做了什么?大数据要怎么做?
引用3个比较常用的大数据定义:
(1)需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
—— Gartner
(2)海量的数据规模(Volume)、快速的数据流转和动态的数据体系(Velocity)、多样的数据类型(Variety)、巨大的数据价值(Value)。
—— IDC
(3)或称巨量数据、海量数据、大资料,指所涉及的数据量规模巨大到无法通过人工,在合理时间内达到截取、管理、处理、并整理成为人类所能解读的信息。
—— Wiki
其他关于大数据的定义也大抵类似,我们可以用几个关键词对大数据做一个界定。
首先,“规模大”,这种规模可以从两个维度来衡量,一是从时间序列累积大量的数据,二是在深度上更加细化的数据。
其次,“多样化”,可以是不同的数据格式,如文字、图片、视频等,可以是不同的数据类别,如人口数据,经济数据等,还可以有不同的数据来源,如互联网、传感器等。
第三,“动态化”。数据是不停地变化的,可以随着时间快速增加大量数据,也可以是在空间上不断移动变化的数据。
这三个关键词对大数据从形象上做了界定。
但还需要一个关键能力,就是“处理速度快”。如果这么大规模、多样化又动态变化的数据有了,但需要很长的时间去处理分析,那不叫大数据。从另一个角度,要实现这些数据快速处理,靠人工肯定是没办法实现的,因此,需要借助于机器实现。
最终,我们借助机器,通过对这些数据进行快速的处理分析,获取想要的信息或者应用的整套体系,才能称为大数据。
我们可以用下面的图示给大数据定义:
想要应用大数据,从流程上来说,大概是这样。
首先我们要有数据源,然后对数据进行收集和存储,在这基础上,再进行分析和应用,形成我们的产品和服务,而产品和服务也会产生新的数据,这些新数据会循环进入我们的流程中。
当这整个循环体系成为一个智能化的体系,通过机器可以实现自动化,那也许就会成为一种新的模式,不管是商业的,或者是其他。
然后具体到实际的应用中,我认为,大数据能够实现的应用,可以概括为两个方向,一是精准化定制,二是预测。
首先,精准化定制。
主要是针对供需两方的,获取需方的个性化需求,帮助供方定准定位目标,然后依据需求提供产品,最终实现供需双方的最佳匹配。
具体应用举例,也可以归纳为三类。
一是个性化产品,比如智能化的搜索引擎,搜索同样的内容,每个人的结果都不同。或者是一些定制化的新闻服务,或者是网游等。
第二种是精准营销,现在已经比较常见的互联网营销,百度的推广,淘宝的网页推广等,或者是基于地理位置的信息推送,当我到达某个地方,会自动推送周边的消费设施等。
第三种是选址定位,包括零售店面的选址,或者是公共基础设施的选址。
这些全都是通过对用户需求的大数据分析,然后供方提供相对定制化的服务。
应用的第二个方向,预测。
预测主要是围绕目标对象,基于它过去、未来的一些相关因素和数据分析,从而提前做出预警,或者是实时动态的优化。
从具体的应用上,也大概可以分为三类。
一是决策支持类的,小到企业的运营决策,证券投资决策,医疗行业的临床诊疗支持,以及电子政务等。
二是风险预警类的,比如疫情预测,日常健康管理的疾病预测,设备设施的运营维护,公共安全,以及金融业的信用风险管理等。
第三种是实时优化类的,比如智能线路规划,实时定价等。
以上呢,是各种文献资料里,对于大数据可以用来做什么的一些畅想,事实上也许大数据可以做的事情,可以扩展到方方面面。
但是,我们再看现实中,大数据实际应用到了什么程度呢?
我认为,目前大数据真正实现了商业化的应用,只有一种,就是互联网营销。
其他我们前面列举的方向,会有些初步的应用,但基本都还停留在探索的阶段。比如疫情预测,无抵押信用贷款等,对于准确性、精细度、可推广性等方面还有待推敲。
造成大数据实际应用与目标蓝图之间差距的主要原因是什么,我认为是数据源的问题。
你必须先获得数据,然后才能应用数据。
因此,数据的可获取性,成为大数据在具体行业应用性评价的一个重要维度。
可以从数据的标准化、开放性和集中度几个维度衡量数据可获取性
同时,获取了数据之后,在应用数据方面,可以从大数据应用的潜在价值维度来衡量,包括效率的提升、成本降低或者是新模式的产生。
此外,还可以从大数据行业应用的可复制/推广性的角度来衡量,不仅包括在本行业内的推广,同时也包括跨行业的推广性。
从三个维度,我个人对大数据在各行业应用的可能性做了一个定位,但这个定位还是非常定性和粗略的,具体可能还需要对行业有更多的大数据应用的探讨和探索。
我认为可以从两个维度发展,首先一个重点任务就是要累积数据,以自身拥有的互联网数据及大数据技术两个资源为基础,从一些细分应用切入,比如可以先从企业角度,继而扩展到行业甚至跨行业的角度,从细分应用先有一些产品的产出,这会成为获取更多数据的入口,同时也为大数据更广应用提供了方向借鉴。
但还有一点,对于平台型的互联网企业,在确定与哪些企业或者行业数据结合、应用大数据时,可以有一些筛选条件,比如,是不是发挥了平台属性,另外,这种应用是不是具有可复制或推广性,不是只局限于某一个企业内,至少是可以应用到整个行业中的。
以上,是我个人对大数据的一些思考,也希望可以跟更多的朋友对于大数据实际应用上有些探讨和学习。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04