京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据是什么_大数据可以做什么_大数据实际做了什么_大数据要怎么做
“大数据”一词时下的热门程度无需赘言,这一两年来互联网相关的任何活动、会议必不可少“大数据”板块。刚刚结束的第13届“中国互联网大会”也专设了大数据论坛。
对于任何一个大数据的从业者或初接触者,或许都会有个共同的感触:大数据很有用!大数据该怎么用?
关于大数据的著作和文章铺天盖地,似乎也共同在传递一个信息:越来越多的行业、人士开始关注并实际探索大数据的应用,我们正在一起描绘着大数据巨大效用的蓝图,但在实践的路上,我们都还在起步阶段小步前行。
大数据根基于互联网,数据仓库、数据挖掘、云计算等互联网技术的发展为大数据的应用奠定了基础。然而实践应用尚处于在探索中前进。同样作为探索学习,我想从我个人的理解角度,分享并与大家探讨四个问题:大数据是什么?大数据可以做什么?大数据实际做了什么?大数据要怎么做?
引用3个比较常用的大数据定义:
(1)需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
—— Gartner
(2)海量的数据规模(Volume)、快速的数据流转和动态的数据体系(Velocity)、多样的数据类型(Variety)、巨大的数据价值(Value)。
—— IDC
(3)或称巨量数据、海量数据、大资料,指所涉及的数据量规模巨大到无法通过人工,在合理时间内达到截取、管理、处理、并整理成为人类所能解读的信息。
—— Wiki
其他关于大数据的定义也大抵类似,我们可以用几个关键词对大数据做一个界定。
首先,“规模大”,这种规模可以从两个维度来衡量,一是从时间序列累积大量的数据,二是在深度上更加细化的数据。
其次,“多样化”,可以是不同的数据格式,如文字、图片、视频等,可以是不同的数据类别,如人口数据,经济数据等,还可以有不同的数据来源,如互联网、传感器等。
第三,“动态化”。数据是不停地变化的,可以随着时间快速增加大量数据,也可以是在空间上不断移动变化的数据。
这三个关键词对大数据从形象上做了界定。
但还需要一个关键能力,就是“处理速度快”。如果这么大规模、多样化又动态变化的数据有了,但需要很长的时间去处理分析,那不叫大数据。从另一个角度,要实现这些数据快速处理,靠人工肯定是没办法实现的,因此,需要借助于机器实现。
最终,我们借助机器,通过对这些数据进行快速的处理分析,获取想要的信息或者应用的整套体系,才能称为大数据。
我们可以用下面的图示给大数据定义:
想要应用大数据,从流程上来说,大概是这样。
首先我们要有数据源,然后对数据进行收集和存储,在这基础上,再进行分析和应用,形成我们的产品和服务,而产品和服务也会产生新的数据,这些新数据会循环进入我们的流程中。
当这整个循环体系成为一个智能化的体系,通过机器可以实现自动化,那也许就会成为一种新的模式,不管是商业的,或者是其他。
然后具体到实际的应用中,我认为,大数据能够实现的应用,可以概括为两个方向,一是精准化定制,二是预测。
首先,精准化定制。
主要是针对供需两方的,获取需方的个性化需求,帮助供方定准定位目标,然后依据需求提供产品,最终实现供需双方的最佳匹配。
具体应用举例,也可以归纳为三类。
一是个性化产品,比如智能化的搜索引擎,搜索同样的内容,每个人的结果都不同。或者是一些定制化的新闻服务,或者是网游等。
第二种是精准营销,现在已经比较常见的互联网营销,百度的推广,淘宝的网页推广等,或者是基于地理位置的信息推送,当我到达某个地方,会自动推送周边的消费设施等。
第三种是选址定位,包括零售店面的选址,或者是公共基础设施的选址。
这些全都是通过对用户需求的大数据分析,然后供方提供相对定制化的服务。
应用的第二个方向,预测。
预测主要是围绕目标对象,基于它过去、未来的一些相关因素和数据分析,从而提前做出预警,或者是实时动态的优化。
从具体的应用上,也大概可以分为三类。
一是决策支持类的,小到企业的运营决策,证券投资决策,医疗行业的临床诊疗支持,以及电子政务等。
二是风险预警类的,比如疫情预测,日常健康管理的疾病预测,设备设施的运营维护,公共安全,以及金融业的信用风险管理等。
第三种是实时优化类的,比如智能线路规划,实时定价等。
以上呢,是各种文献资料里,对于大数据可以用来做什么的一些畅想,事实上也许大数据可以做的事情,可以扩展到方方面面。
但是,我们再看现实中,大数据实际应用到了什么程度呢?
我认为,目前大数据真正实现了商业化的应用,只有一种,就是互联网营销。
其他我们前面列举的方向,会有些初步的应用,但基本都还停留在探索的阶段。比如疫情预测,无抵押信用贷款等,对于准确性、精细度、可推广性等方面还有待推敲。
造成大数据实际应用与目标蓝图之间差距的主要原因是什么,我认为是数据源的问题。
你必须先获得数据,然后才能应用数据。
因此,数据的可获取性,成为大数据在具体行业应用性评价的一个重要维度。
可以从数据的标准化、开放性和集中度几个维度衡量数据可获取性
同时,获取了数据之后,在应用数据方面,可以从大数据应用的潜在价值维度来衡量,包括效率的提升、成本降低或者是新模式的产生。
此外,还可以从大数据行业应用的可复制/推广性的角度来衡量,不仅包括在本行业内的推广,同时也包括跨行业的推广性。
从三个维度,我个人对大数据在各行业应用的可能性做了一个定位,但这个定位还是非常定性和粗略的,具体可能还需要对行业有更多的大数据应用的探讨和探索。
我认为可以从两个维度发展,首先一个重点任务就是要累积数据,以自身拥有的互联网数据及大数据技术两个资源为基础,从一些细分应用切入,比如可以先从企业角度,继而扩展到行业甚至跨行业的角度,从细分应用先有一些产品的产出,这会成为获取更多数据的入口,同时也为大数据更广应用提供了方向借鉴。
但还有一点,对于平台型的互联网企业,在确定与哪些企业或者行业数据结合、应用大数据时,可以有一些筛选条件,比如,是不是发挥了平台属性,另外,这种应用是不是具有可复制或推广性,不是只局限于某一个企业内,至少是可以应用到整个行业中的。
以上,是我个人对大数据的一些思考,也希望可以跟更多的朋友对于大数据实际应用上有些探讨和学习。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28